
Bundle: College Physics, Loose-Leaf Version, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
11th Edition
ISBN: 9781337741620
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 54P
An astronaut on the Moon wishes to measure the local value of g by timing pulses traveling down a wire that has a large object suspended from it. Assume a wire of mass 4.00 g is 1.60 m long and has a 3.00-kg object suspended from it. A pulse requires 36.1 ms to traverse the length of the wire. Calculate gMoon from these data. (You may neglect the mass of the wire when calculating the tension in it.)
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
1)
Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1?
Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^.
2)
Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2?
Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^.
3)
Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0?
Express your answer in terms of any or all of the following variables: k, q0, q1, q2.
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
Chapter 13 Solutions
Bundle: College Physics, Loose-Leaf Version, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Ch. 13.1 - A block on the end of a horizontal spring is...Ch. 13.1 - For a simple harmonic oscillator, which of the...Ch. 13.2 - When an object moving in simple harmonic motion is...Ch. 13.3 - An object of mass m is attached to a horizontal...Ch. 13.3 - Prob. 13.5QQCh. 13.4 - If the amplitude of a system moving in simple...Ch. 13.5 - A simple pendulum is suspended from the ceiling of...Ch. 13.5 - A pendulum dork depends on the period of a...Ch. 13.5 - The period of a simple pendulum is measured to be...Ch. 13 - An objectspring system undergoes simple harmonic...
Ch. 13 - If an objectspring system is hung vertically and...Ch. 13 - The spring in Figure CQ13.3 is stretched from its...Ch. 13 - If the spring constant shown in Figure CQ13.3 is...Ch. 13 - If the spring shown in Figure CQ13.3 is com...Ch. 13 - If a spring is cut in half, what happens to its...Ch. 13 - A pendulum bob is made from a sphere filled with...Ch. 13 - A block connected to a horizontal spring is in...Ch. 13 - (a) Is a bouncing ball an example of simple...Ch. 13 - If a grandfather clock were running slow, how...Ch. 13 - What happens to the speed of a wave on a string...Ch. 13 - Prob. 12CQCh. 13 - Waves are traveling on a uniform string under...Ch. 13 - Identify each of the following waves as either...Ch. 13 - A block, of mass m = 0.60 kg attached to a spring...Ch. 13 - A spring oriented vertically is attached to a hard...Ch. 13 - The force constant of a spring is 137 N/m. Find...Ch. 13 - A spring is hung from a ceiling, and an object...Ch. 13 - A biologist hangs a sample of mass 0.725 kg on a...Ch. 13 - An archer must exert a force of 375 N on the...Ch. 13 - A spring 1.50 m long with force constant 475 N/m...Ch. 13 - A block of mass m = 2.00 kg is attached to a...Ch. 13 - A slingshot consists of a light leather cup...Ch. 13 - An archer pulls her bowstring back 0.400 m by...Ch. 13 - A student pushes the 1.50-kg block in Figure...Ch. 13 - An automobile having a mass of 1.00 103 kg is...Ch. 13 - A 10.0-g bullet is fired into, and embeds itself...Ch. 13 - An object-spring system moving with simple...Ch. 13 - A horizontal block-spring system with the block on...Ch. 13 - A 0.250-kg block attached to a light spring...Ch. 13 - A block-spring system consists of a spring with...Ch. 13 - A 0.40-kg object connected to a light spring with...Ch. 13 - At an outdoor market, a bunch of bananas attached...Ch. 13 - A student stretches a spring, attaches a 1.00-kg...Ch. 13 - A horizontal spring attached to a wall has a force...Ch. 13 - An object moves uniformly around a circular path...Ch. 13 - The wheel in the simplified engine of Figure...Ch. 13 - The period of motion of an object-spring system is...Ch. 13 - A vertical spring stretches 3.9 cm when a 10.-g...Ch. 13 - When four people with a combined mass of 320 kg...Ch. 13 - The position of an object connected to a spring...Ch. 13 - A harmonic oscillator is described by the function...Ch. 13 - A 326-g object is attached to a spring and...Ch. 13 - An object executes simple harmonic motion with an...Ch. 13 - A 2.00-kg object on a frictionless horizontal...Ch. 13 - A spring of negligible mass stretches 3.00 cm from...Ch. 13 - Given that x = A cos (t) is a sinusoidal function...Ch. 13 - A man enters a tall tower, needing to know its...Ch. 13 - A simple pendulum has a length of 52.0 cm and...Ch. 13 - A seconds pendulum is one that moves through its...Ch. 13 - A clock is constructed so that it keeps perfect...Ch. 13 - A coat hanger of mass m = 0.238 kg oscillates on a...Ch. 13 - The free-fall acceleration on Mars is 3.7 m/s2....Ch. 13 - A simple pendulum is 5.00 in long. (a) What is the...Ch. 13 - The sinusoidal wave shown in Figure P13.41 is...Ch. 13 - An object attached to a spring vibrates with...Ch. 13 - Prob. 43PCh. 13 - The distance between two successive minima of a...Ch. 13 - A harmonic wave is traveling along a rope. It is...Ch. 13 - A bat can detect small objects, such as an insect,...Ch. 13 - Orchestra instruments are commonly tuned to match...Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Workers attach a 25.0-kg mass to one end of a...Ch. 13 - A piano siring of mass per unit length 5.00 103...Ch. 13 - A student taking a quiz finds on a reference sheet...Ch. 13 - Prob. 53PCh. 13 - An astronaut on the Moon wishes to measure the...Ch. 13 - A simple pendulum consists of a ball of mass 5.00...Ch. 13 - A string is 50.0 cm long and has a mass of 3.00 g....Ch. 13 - Tension is maintained in a string as in Figure...Ch. 13 - The elastic limit of a piece of steel wire is 2.70...Ch. 13 - A 2.65-kg power line running between two towers...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - The position of a 0.30-kg object attached to a...Ch. 13 - An object of mass 2.00 kg is oscillating freely on...Ch. 13 - Prob. 64APCh. 13 - A simple pendulum has mass 1.20 kg and length...Ch. 13 - A 0.500-kg block is released from rest and slides...Ch. 13 - A 3.00-kg object is fastened to a light spring,...Ch. 13 - A 5.00-g bullet moving with an initial speed of...Ch. 13 - A large block P executes horizontal simple...Ch. 13 - A spring in a toy gun has a spring constant of...Ch. 13 - A light balloon filled with helium of density...Ch. 13 - An object of mass m is connected to two rubber...Ch. 13 - Assume a hole is drilled through the center of the...Ch. 13 - Figure P13.74 shows a crude model of an insect...Ch. 13 - A 2.00-kg block hangs without vibrating at the end...Ch. 13 - A system consists of a vertical spring with force...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- 6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward
- 4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY