EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.5, Problem 1FE
Two steel wires have the same length and are under the same tension. But wire A has twice the diameter of wire B. Which of the following is true? (a) Wire B stretches twice as much as wire A. (b) Wire B stretches four times as much as wire A. (c) Wire A stretches twice as much as wire B. (d) Wire A stretches four times as much as wire B. (e) Both wires stretch the same amount.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 480 mm long thighbone (femur), which is the largest and longest bone in the human body, has a cross sectional area of 7.7 × 10–4 m2. A safety factor of 4 applies and the maximum compressional stress that a bone can withstand is 1.6 × 108 N/m2 before it breaks. Young’s Modulus (E ) of a bone at room temperature is 15 × 109 Pa. How much will it compress to support a weight of 1.2 × 105 N?
What is the force required to a steel wire to double its length when its area of cross-section is one
sq. cm and Young's modulus is 200G Pa. As the length of the wire is doubled, the change in length
is equal to its original length.
)A strand of dragline silk is 6 µm about in diameter, about 10% the diameter of a human hair. What is
the largest mass that can be supported by a wire of dragline silk and by a very fine copper wire of the same
diameter? (Tensile strength of silk: 1000 × 106 N/m² and tensile strength of copper: 200 × 106 N/m²)
0000
Chapter 12 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 12.1 - Prob. 1AECh. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.3 - Prob. 1EECh. 12.5 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...
Ch. 12 - A ground retaining wall is shown in Fig. 1240a....Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - Prob. 8QCh. 12 - Prob. 9QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 11QCh. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQCh. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - Prob. 9MCQCh. 12 - Prob. 10MCQCh. 12 - Prob. 11MCQCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 12PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - Prob. 14PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - Prob. 16PCh. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - Prob. 31PCh. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Prob. 36PCh. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - Prob. 42PCh. 12 - (II) How much pressure is needed to compress the...Ch. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - Prob. 45PCh. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - Prob. 47PCh. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - Prob. 50PCh. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - Prob. 60GPCh. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - Prob. 62GPCh. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 64GPCh. 12 - Prob. 67GPCh. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - Prob. 70GPCh. 12 - Prob. 73GPCh. 12 - Prob. 74GPCh. 12 - Prob. 76GPCh. 12 - Prob. 77GPCh. 12 - Prob. 78GPCh. 12 - Prob. 79GPCh. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - Prob. 81GPCh. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Prob. 84GPCh. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - Prob. 90GPCh. 12 - Prob. 91GPCh. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - Prob. 93GPCh. 12 - Prob. 94GPCh. 12 - Prob. 95GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assumi...
University Physics Volume 1
24. John is changing a lightbulb in a lamp, It’s a warm summer evening, and the resistance of his damp skin is ...
College Physics: A Strategic Approach (3rd Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
What is the electric field at a point where the force on a 2.0106C chargeis (4.0i6.0j)106N ?
University Physics Volume 2
A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball p...
College Physics
In the spaces provided, draw and label vectors to represent the initial momentum, and the change of glider A in...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A copper rod with length 1.4 m and cross-sectional area 2.0 cm2 is fastened to a steel rod of length L and cross-sectional area 1.0 cm2. The compound structure is pulled on each side by two forces of equal magnitude 6.00 104 N (Fig. P14.57). Find the length L of the steel rod if the elongations (L) of the two rods are equal. Use the values Ysteel = 2.0 1011 Pa and YCu = 1.1 1011 Pa. FIGURE P14.57arrow_forwardA uniform wire (Y = 2.0 1011 N/m2) is subjected to a longitudinal tensile stress of 4.0 107 N/m2. What is the fractional change in the length of the wire?arrow_forwardThe lintel of prestressed reinforced concrete in Figure P12.27 is 1.50 m long. The concrete encloses one steel reinforcing rod with cross-sectional area 1.50 cm2. The rod joins two strong end plates. The cross-sectional area of the concrete perpendicular to the rod is 50.0 cm2. Youngs modulus for the concrete is 30.0 109 N/m2. After the concrete cures and the original tension T1 in the rod is released, the concrete is to be under compressive stress 8.00 106 N/m2. (a) By what distance will the rod compress the concrete when the original tension in the rod is released? (b) What is the new tension T2 in the rod? (c) The rod will then be how much longer than its unstressed length? (d) When the concrete was poured, the rod should have been stretched by what extension distance from its unstressed length? (e) Find the required original tension T1 in the rod. Figure P12.27arrow_forward
- A certain wire, 3 m long, stretches by 1.2 mm when under tension 200 N. A wire with twice the diameter, 3 m long, made of the same material and under the same tension, stretches by what amount?arrow_forwardTwo wires are made of the same material, their Young’s Modulus constant is 10 x10^10 Pa. Wire X is 4 times as long and has half the diameter of wire Y. If they are to be compressed by the same amount, the needed force on Y must bearrow_forwardA homogeneous 800 kg bar AB is supported at either end by a cable as shown in the figure below. Calculate the ratio between the smallest area of the steel cable to the smallest area of the bronze cable if the stress is not to exceed 90 MPa in bronze and 120 MPa in steel. Bronze L = 4 m A 10 m Steel L = 3m Barrow_forward
- The maximum compressional stress that a bone can withstand is 1.6 × 108 N/m2 before it breaks. Athighbone (femur), which is the largest and longest bone in the human body, has a cross sectional areaof 7.7 × 10−4 m2. What is the maximum compressional force that can be applied to the thighbone?(a) 2.1 × 1011 N, (b) 1.2 × 105 N, (c) 4.8 × 1012 N, (d) 3.0 × 103 N, (e) This cannot be determinedsince Young’s modulus is not given.arrow_forwardMasses M1 and M2 are supported by wires that have equal lengths when unstretched. The wire supporting M1 is an aluminum wire 1.35 mm in diameter, and the one supporting M2 is a steel wire 0.4 mm in diameter. What is the ratio M1/M2 if the two wires stretch by the same amount? Young’s modulus for aluminum is 7 × 10^10 N/m^2and for steel 2 × 10^11 N/m^2. *arrow_forwardA diamond rod and a tungsten rod have the same length and diameter and are subjected to the same force. If the diamond rod stretches by 1.40 x 10-6 m, by what amount (in m) will the tungsten rod stretch? Young's modulus for diamond = 1.22 x 1012 N/m2; for tungsten = 3.60 x 1011 N/m2.arrow_forward
- How large a force is necessary to stretch a 2.0-mm-diameter steel wire (Y = 2.0 x 1011 N/m2) by 1.0%?arrow_forwardBy how much does a 65.0-kg mountain climber stretch her 0.800-cm diameter nylon rope when she hangs 35.0 m below a rock outcropping? (For nylon, Y = 1.35 × 109 Pa.)arrow_forwarda 300 kg cylinder that is horizontal. Three steel wires support the cylinder from a ceiling.Wires 1 and 3 are attached at the ends of the cylinder, and wire 2 is attached at the center. The wires each have a crosssectional area of 2.00 * 10-6 m2. Initially (before the cylinder was put in place) wires 1 and 3 were 2.0000 m long and wire 2 was 6.00 mm longer than that. Now (with the cylinder in place) all three wires have been stretched.What is the tension in (a) wire 1 and (b) wire 2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY