Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
5th Edition
ISBN: 9780137488179
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One end of a uniform { = 4.30-m-long rod of weight w is supported by a cable at an angle of 0 = 37° with the rod. The other end rests against a wall, where it is held by
friction (see figure). The coefficient of static friction between the wall and the rod is µ. = 0.490. Determine the minimum distance x from point A at which an additional
weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A.
B
Need Help?
Read It
Watch It
A hungry bear weighing 730 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam (see the figure below). The beam is uniform, weighs 200 N, and is 7.00 m long, and it is supported by a wire at an angle of θ = 60.0°. The basket weighs 80.0 N.
(a) If the wire can withstand a maximum tension of 875 N, what is the maximum distance the bear can walk before the wire breaks?
One end of a uniform rod of weight w = 73.5 N and length L = 2.55 m is supported by a cable at an angle of ? = 37.0°above the rod. The other end rests on a small frictionless support and presses into a wall as shown in the figure.
Determine the magnitude n of the vertical normal force exerted by the support on the rod and find the magnitude T of the tension in the cable.
Chapter 12 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Ch. 12.1 - Prob. 1AECh. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.3 - Prob. 1EECh. 12.5 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...
Ch. 12 - A ground retaining wall is shown in Fig. 1240a....Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - Prob. 8QCh. 12 - Prob. 9QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 11QCh. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQCh. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - Prob. 9MCQCh. 12 - Prob. 10MCQCh. 12 - Prob. 11MCQCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 12PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - Prob. 14PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - Prob. 16PCh. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - Prob. 31PCh. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Prob. 36PCh. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - Prob. 42PCh. 12 - (II) How much pressure is needed to compress the...Ch. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - Prob. 45PCh. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - Prob. 47PCh. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - Prob. 50PCh. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - Prob. 60GPCh. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - Prob. 62GPCh. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 64GPCh. 12 - Prob. 67GPCh. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - Prob. 70GPCh. 12 - Prob. 73GPCh. 12 - Prob. 74GPCh. 12 - Prob. 76GPCh. 12 - Prob. 77GPCh. 12 - Prob. 78GPCh. 12 - Prob. 79GPCh. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - Prob. 81GPCh. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Prob. 84GPCh. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - Prob. 90GPCh. 12 - Prob. 91GPCh. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - Prob. 93GPCh. 12 - Prob. 94GPCh. 12 - Prob. 95GP
Knowledge Booster
Similar questions
- An aluminium (=2.7g/cm3) wire is suspended from the ceiling and hangs vertically. How long must the wire be before the stress at its upper end reaches the proportionality limit, which is 8.0107N/m2 ?arrow_forwardOne end of a uniform ℓ = 4.50-m-long rod of weight w is supported by a cable at an angle of θ = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is μs = 0.480. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A. marrow_forwardAs part of an engineering design, a load of mass M2=10 kg is to be suspended from the far end of a beam of mass M1=8kg. A horizontal cable supporting the beam attaches to the beam at a distance of d=2m from a joint/hinge. The length of the beam is L=7m. The beam makes an angle of 55 degrees with the horizontal. M, 2 a. What magnitude of force should the cable be able to withstand in this setup? b. What magnitude of force should the joint/hinge be able to withstand in this setup?arrow_forward
- A 387-kg steel beam of length 5.00 m is attached to a wall by a hinge, and kept level by a cable attached to it at a 30.0◦ angle. The maximum tension that the cable can sustain before breaking is 13.0 kN. There is a support that allows a mass to be hung from the beam, three-quarters of the way along its length. (a) What is the maximum mass that can be hung from the beam before the cable snaps? (b) At this maximum mass, what is the magnitude and direction of the reaction force F from the wall against the hinge?arrow_forwardOne end of a uniform ℓ = 4.70-m-long rod of weight w is supported by a cable at an angle of ? = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is ?s = 0.520. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A.arrow_forwardOne end of a uniform ℓ = 4.40-m-long rod of weight w is supported by a cable at an angle of ? = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is ?s = 0.570. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A._______________________ marrow_forward
- One end of a uniform € = 4.30-m-long rod of weight w is supported by a cable at an angle of 8 = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is μ = 0.450. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A. 9 R Qarrow_forwarda uniform beam of weight 500 N and length 3.0 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance D above the beam. The least tension that will snap the cable is 1200 N. (a) What value of D corresponds to that tension? (b) To prevent the cable from snapping, should D be increased or decreased from that value?arrow_forwardIn a city park a nonuniform wooden beam 4.00 m long is suspended horizontally by a light steel cable at each end. The cable at the left-hand end makes an angle of 30.0° with the vertical and has tension 620 N. The cable at the right-hand end of the beam makes an angle of 50.0° with the vertical. As an employee of the Parks and Recreation Department, you are asked to find the weight of the beam and the location of its center of gravity.arrow_forward
- One end of a uniform - 3.60-m-long rod of weight w is supported by a cable at an angle of 6-37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is,-0.460. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point Aarrow_forwardOne end of a uniform 4.0-m-long rod of weight w is supported by a cable (at 37 degrees from the horizontal). The other end rests against a wall, where it is held by friction. (see the figure.) The coefficient of static friction between the wall and the rod is μs = 0.50. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A.arrow_forwardOne end of a 2.00 m uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle θ with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.530. When θ = 16.5°, how large must the coefficient of static friction be so that the block can be attached 0.800 [m] from the left end of the stick without causing it to slip?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning