Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 66P
Atmospheric air at 98.5 kPa and 20°C is drawn into a vacuum tank through a convergent-divergent nozzle of 50-mm throat diameter and 75-mm exit diameter. Caiculate the largest mass flow rate that can be drawn through this nozzle under these conditions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please Help with this question. Show clear steps and highlight the answers. Also explain the sub question related to the main question please. THanks!
multi-stage high –pressure steam turbine is supplied with steam at a stagnation pressure of 7 MPa and a stagnation temperature of 5000C. The corresponding specific enthalpy is 3410kJ.kg. The steam exhaust from the turbine at a stagnation pressure of 0.7 MPa abs., the steam having been in a super-heated condition throughout the expansion. It can be assumed that the steam behaves like a perfect gas over the range of the expansion and that ᵞ = 1.3. Given that the turbine flow process has a small-stage efficiency of 0.82, determine (1) the temperature and specific volume at the end of the expansion; (2) the re-heat factor. The specific volume of superheated steam is represented by pv=0.231(h-1943), where “p” is in kPa, v is in m3/kg and “h” is in kJ/kg.
i just need final answer
The tank is filled with air at 20°C and 139 kPa in stationary condition. Air is leaving the tank with flowing in anozzle under steady-state condition. The flow is under isentropic and subsonic condition. The nozzle exit area is28,1 cm2. After leaving from the nozzle, air strikes a vertical plate. Define the force [N] required to hold the platestationary. (Note: Assume Pe=1 atm, kor=1.4, Ric=287 J/kg.K)
Chapter 12 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 12 - Air is expanded in a steady flow process through a...Ch. 12 - Five kilograms of air is cooled in a closed tank...Ch. 12 - Air is contained in a piston-cylinder device. The...Ch. 12 - Calculate the power delivered by the turbine per...Ch. 12 - If hydrogen flows as a perfect gas without...Ch. 12 - A 1-m3 tank contains air at 0.1 MPa absolute and...Ch. 12 - Air enters a turbine in steady flow at 0.5 kg/s...Ch. 12 - Natural gas, with the thermodynamic properties of...Ch. 12 - Carbon dioxide flows at a speed of 10 m/s in a...Ch. 12 - In an isothermal process, 0.1 cubic feet of...
Ch. 12 - Calculate the speed of sound at 20C for (a)...Ch. 12 - An airplane flies at 550 km/hr at 1500 m altitude...Ch. 12 - Actual performance characteristics of the Lockheed...Ch. 12 - For a speed of sound in steel of 4300 m/s,...Ch. 12 - Determine and plot the Mach number of an...Ch. 12 - Investigate the effect of altitude on Mach number...Ch. 12 - The grandstand at the Kennedy Space Center is...Ch. 12 - Use data for specific volume to calculate and plot...Ch. 12 - An object traveling in atmospheric air emits two...Ch. 12 - An object traveling in atmospheric air emits two...Ch. 12 - While at the seashore, you observe an airplane...Ch. 12 - The temperature varies linearly from sea level to...Ch. 12 - Prob. 23PCh. 12 - A photograph of a bullet shows a Mach angle of 32....Ch. 12 - An F-4 aircraft makes a high-speed pass over an...Ch. 12 - All aircraft passes overhead at 3 km altitude. The...Ch. 12 - A supersonic aircraft flies at 3 km altitude at a...Ch. 12 - For the conditions of Problem 12.27, find the...Ch. 12 - The Concorde supersonic transport cruised at M =...Ch. 12 - Plot the percentage discrepancy between the...Ch. 12 - Compute the air density in the undisturbed air and...Ch. 12 - Carbon dioxide flows in a duct at a velocity of 90...Ch. 12 - If nitrogen at 15C is flowing and the stagnation...Ch. 12 - An aircraft cruises at M = 0.65 at 10 km altitude...Ch. 12 - High-speed aircraft use air data computers to...Ch. 12 - A supersonic wind tunnel test section is designed...Ch. 12 - Oxygen flows in a passage at a pressure of 25...Ch. 12 - What is the pressure on the nose of a bullet...Ch. 12 - Prob. 39PCh. 12 - Air flows in an insulated duct. At point the...Ch. 12 - Consider steady, adiabatic flow of air through a...Ch. 12 - Air passes through a normal shock in a supersonic...Ch. 12 - A Boeing 747 cruises at M = 0:87 at an altitude of...Ch. 12 - Space debris impact is a real concern for...Ch. 12 - A CO2 cartridge is used to propel a toy rocket....Ch. 12 - Nitrogen flows from a large tank, through a...Ch. 12 - Air flows from the atmosphere into an evacuated...Ch. 12 - Oxygen discharges from a tank through a convergent...Ch. 12 - The hot gas stream at the turbine inlet of a JT9-D...Ch. 12 - Carbon dioxide discharges from a tank through a...Ch. 12 - Air at 100F and 100 psia in a large tank flows...Ch. 12 - Calculate the required diameter of a convergent...Ch. 12 - Steam flows steadily and isentropically through a...Ch. 12 - Nitrogen flows through a diverging section of duct...Ch. 12 - At a section in a passage, the pressure is 30...Ch. 12 - In a given duct flow M = 2.0; the velocity...Ch. 12 - Air flows isentropically through a converging...Ch. 12 - Five pounds of air per second discharge from a...Ch. 12 - Air flows isentropically through a...Ch. 12 - Air, at an absolute pressure of 60.0 kPa and 27C,...Ch. 12 - Carbon dioxide flows from a tank through a...Ch. 12 - A convergent-divergent nozzle of 50-mm tip...Ch. 12 - Air flows adiabatically through a duct. At the...Ch. 12 - Air flows isentropically through a converging...Ch. 12 - Air flows isentropically through a converging...Ch. 12 - Atmospheric air at 98.5 kPa and 20C is drawn into...Ch. 12 - The exit section of a convergent-divergent nozzle...Ch. 12 - Air flowing isentropically through a converging...Ch. 12 - Air flows from a large tank at p = 650 kPa...Ch. 12 - A converging nozzle is connected to a large tank...Ch. 12 - Air at 0C is contained in a large tank on the...Ch. 12 - A large tank initially is evacuated to 10 kPa...Ch. 12 - Air flows isentropically through a converging...Ch. 12 - Air enters a converging-diverging nozzle at 2 MPa...Ch. 12 - Prob. 75PCh. 12 - A jet transport aircraft, with pressurized cabin,...Ch. 12 - A converging-diverging nozzle, with a throat area...Ch. 12 - Air, at a stagnation pressure of 7.20 MPa absolute...Ch. 12 - A small rocket motor, fueled with hydrogen and...Ch. 12 - Testing of a demolition explosion is to be...Ch. 12 - A total-pressure probe is placed in a supersonic...Ch. 12 - Air flows steadily through a long, insulated...Ch. 12 - Air discharges through a convergent-divergent...Ch. 12 - A normal shock wave exists in an airflow. The...Ch. 12 - Air approaches a normal shock at V1 = 900 m/s, p1...Ch. 12 - Air approaches a normal shock at M1 = 2.5, with...Ch. 12 - Air undergoes a normal shock. Upstream, T1 = 35C,...Ch. 12 - If, through a normal shock wave in air, the...Ch. 12 - The stagnation temperature in an airflow is 149C...Ch. 12 - A supersonic aircraft cruises at M = 2.2 at 12 km...Ch. 12 - The Concorde supersonic transport flew at M = 2.2...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Many contemporary languages allow two kinds of comments: one in which delimiters are used on both ends (multipl...
Concepts Of Programming Languages
(Multiples of 2 with an Infinite Loop) Write an application that keeps displaying in the command window the mul...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
If the coefficient of static friction at contact points A and B is, s = 0.3, determine the maximum force P that...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Write a statement that creates an object that can be used to write binary data to the fiie Configuration.dat.
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
6. The Volcanic Explosivity Index (VEI) is based primarily on the amount of material ejected from a volcano, al...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
How is the window manager related to the operating system?
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air flows through a constant cross-section conduit with Mack number Ma = 1 at 200 KPa pressure and 100°C temperature. State the necessary assumptions and calculate: d) With the specified inlet velocity a gas is flowing isentropically in the converging duct. At the throat if we assume that the velocity is supersonic, how does the mass flow rate be affected compared to sonic velocity at the throat. How could supersonic velocity can be achieved in this case? Note : (The properties of air at room temperature are R = 0.287 kPa.m3/kg.K and k = 1.4.) please answer my question , please help me , don't use hand write , I need by Ms wordarrow_forwardThe stagnation chamber of a wind tunnel is connected to a high pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe which has a inside diameter of 4 inches. If the static pressure ratio between the bottle farm and the stagnation chamber is 10 and the bottle farm static pressure is 100 atm, how long can the pipe be without choking and what is the change in entropy? Assume adiabatic,subsonic, one-dimensional flow with a friction coefficient of 0.005.arrow_forwardDon't use chatgpt will upvotearrow_forward
- Gas dynamicsarrow_forwardAir flows through a constant cross-section conduit with Mack number Ma = 1 at 200 KPa pressure and 100°C temperature. State the necessary assumptions and calculate, (a) stagnation temperature (b) stagnation pressure, and (c) stagnation density.(d) With the specified inlet velocity a gas is flowing isentropically in the converging duct. At thethroat if we assume that the velocity is supersonic, how does the mass flow rate be affectedcompared to sonic velocity at the throat. How could supersonic velocity can be achieved in thiscase?arrow_forwardi need the answer quicklyarrow_forward
- Please don't provide handwritten solution ....arrow_forwardQ.2. Air flows through a constant-area duct is connected to a reservoir at a temperature of 500°C and a pressure of 500 kPa by a converging nozzle, as shown in Figure. Heat is lost at the rate of 250 kJ kg. Determine the exit pressure and Mach number and the mass flow rate for a back pressure of 0 kPa. q- 250 kJkg P = 500 kPa T,= 500°C Ps = 0 kPa D=0.02marrow_forwardPlease helparrow_forward
- a) A convergent-divergent nozzle with a given area ratio is supplied with air at a constant stagnation pressure P, and a constant stagnation temperature To. With the aid of sketches give a clear account of the operation of convergent-divergent nozzles as a function of back pressure P. In your answer clearly indicate the critical points (pressure ratios) along the pressure ratio axis. A rocket is equipped with a convergent-divergent nozzle (== 3.0). b) pare supply temperture and pressure of the Determine the design choked subsonic and supersonic Mach numbers for this area ratio. You may assume the combustion products have the same properties as air and the the nozzle is an ideal nozzle. c) Determine the range of pressure ratios for which a normal shock wave appears in the divergent part of the nozzle. d) At an altitude of 11 km what should be the supply pressure to the nozzle in order to have a fully expanded nozzle. What would be the nozzle's discharge mass flow rate per unit throat…arrow_forwardNeed solution by using tables of isentropic and normal shockarrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License