Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
5th Edition
ISBN: 9780137488179
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Ch. 12.1 - Prob. 1AECh. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.3 - Prob. 1EECh. 12.5 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...
Ch. 12 - A ground retaining wall is shown in Fig. 1240a....Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - Prob. 8QCh. 12 - Prob. 9QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 11QCh. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQCh. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - Prob. 9MCQCh. 12 - Prob. 10MCQCh. 12 - Prob. 11MCQCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 12PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - Prob. 14PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - Prob. 16PCh. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - Prob. 31PCh. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Prob. 36PCh. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - Prob. 42PCh. 12 - (II) How much pressure is needed to compress the...Ch. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - Prob. 45PCh. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - Prob. 47PCh. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - Prob. 50PCh. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - Prob. 60GPCh. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - Prob. 62GPCh. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 64GPCh. 12 - Prob. 67GPCh. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - Prob. 70GPCh. 12 - Prob. 73GPCh. 12 - Prob. 74GPCh. 12 - Prob. 76GPCh. 12 - Prob. 77GPCh. 12 - Prob. 78GPCh. 12 - Prob. 79GPCh. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - Prob. 81GPCh. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Prob. 84GPCh. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - Prob. 90GPCh. 12 - Prob. 91GPCh. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - Prob. 93GPCh. 12 - Prob. 94GPCh. 12 - Prob. 95GP
Knowledge Booster
Similar questions
- In analyzing the equilibrium of a flat, rigid object, you are about to choose an axis about which you will calculate torques. Which of the following describes the choice you should make? (a) The axis should pass through the objects center of mass. (b) The axis should pass through one end of the object. (c) The axis should be either the x axis or the y axis. (d) The axis should pass through any point within the object. (e) Any axis within or outside the object can be chosen.arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardA constant net torque is applied to an object. Which one of the following will not be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia, or (d) center of gravity.arrow_forward
- Answer yes or no to the following questions. (a) Is it possible to calculate the torque acting on a rigid object without specifying an axis of rotation? (b) Is the torque independent of the location of the axis of rotation?arrow_forwardThe fishing pole in Figure P10.22 makes an angle of 20.0 with the horizontal. What is the torque exerted by the fish about an axis perpendicular to the page and passing through the anglers hand if the fish pulls on the fishing line with a force F=100N at an angle 37.0 below the horizontal? The force is applied at a point 2.00 m from the anglers hands. Figure P10.22arrow_forwardA force of F=(2.00i+3.00j) N is applied to an object that is pivoted about a fixed axle aligned along the z coordinate axis. The force is applied at the point r=(4.00i+5.00j)m. Find (a) the magnitude of the net torque about the z axis and (b) the direction of the torque vector .arrow_forward
- An automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardAn automobile engine can produce 200 N m of torque. Calculate the angular acceleration produced if 95.0% of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0 kg disk that has a 0.180 m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forward
- Can a set of forces have a net force that is zero and a net torque that is not zero?arrow_forwardFigure P10.82 shows a vertical force applied tangentially to a uniform cylinder of weight Fg. The coefficient of static friction between the cylinder and all surfaces is 0.500. The force P is increased in magnitude until the cylinder begins to rotate. In terms of Fg, find the maximum force magnitude P that can be applied without causing the cylinder to rotate. Suggestion: Show that both friction forces will be at their maximum values when the cylinder is on the verge of slipping. Figure P10.82arrow_forward(a) Is it possible to calculate the torque acting on a rigid object without specifying an origin? (b) Is the torque independent of the location of the origin?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning