
Concept explainers
Add the following member function to the ADT class DigitalTime defined in Displays 12.1 and 12.2:
void DigitalTime::intervalSince(const DigitalTime& aPreviousTime,
int& hoursInInterval, int& minutesInInterval) const
This function computes the time interval between two values of type DigitalTime. One of the values of type DigitalTime is the object that calls the member function intervalSince, and the other value of type DigitalTime is given as the first argument. For example, consider the following code:
DigitalTime current(5, 45), previous(2, 30);
int hours, minutes;
current.intervalSince(previous, hours, minutes);
cout << “The time interval between ” << previous
<< “ and ” << current << endl
<< “is ” « hours « “ hours and ”
<< minutes << “ minutes.\n”;
In a
The time interval between 2:30 and 5:45
is 3 hours and 15 minutes.
Allow the time given by the first argument to be later in the day than the time of the calling object. In this case, the time given as the first argument is assumed to be on the previous day. You should also write a program to test this revised ADT class.

Compute interval between two times
Program Plan:
- The interface file “dtime.h” is same as in the Display 12.1 however user needs to add the member function “void intervalSince(const DigitalTime& aPreviousTime, int& hoursInInterval, int& minutesInInterval)const;”.
- In the implementation file “dtime.cpp”, add the function definition for function “intervalSince”.
- In this function, first initializes the variables “hoursInInterval” and “minutesInInterval” to “0”.
- Declare a variable for compute the difference in “DigitalTime”.
- Compute the hour difference using “hour - aPreviousTime.hour”.
- Compute the minute difference using “minute - aPreviousTime.minute”.
- Check the condition of “hour” and “minutes”.
- Finally store the hours and minutes difference in their respective variables.
- In the application file that is “main.cpp”.
- Include the directive “dtime.h”.
- Define main function.
- Initializes the time for current and previous.
- Declare “int” variables for “hours” and “minutes”.
- Call “intervalSince()” function.
- Display the interval between two times.
The below C++ program is used to compute interval between two values of type “DigitalTime”.
Explanation of Solution
Program:
Modified code for “dtime.h”:
//DISPLAY 12.1 Interface File for DigitalTime
//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.
#include <iostream>
using namespace std;
class DigitalTime
{
public:
friend bool operator ==(const DigitalTime& time1, const DigitalTime& time2);
//Returns true if time1 and time2 represent the same time;
//otherwise, returns false.
DigitalTime(int theHour, int theMinute);
//Precondition: 0 <= theHour <= 23 and 0 <= theMinute <= 59.
//Initializes the time value to theHour and theMinute.
DigitalTime( );
//Initializes the time value to 0:00 (which is midnight).
void advance(int minutesAdded);
//Precondition: The object has a time value.
//Postcondition: The time has been changed to minutesAdded minutes later.
void advance(int hoursAdded, int minutesAdded);
//Precondition: The object has a time value.
//Postcondition: The time value has been advanced
//hoursAdded hours plus minutesAdded minutes.
void intervalSince(const DigitalTime& aPreviousTime, int& hoursInInterval, int& minutesInInterval)const;
//Precondition: The object has a time value.
//Precondition: The aPreviousTime object has a time value
//Postcondition: The hoursInInterval represents the number of hours that have passed and the minutesInInterval represents the number of minutes that have passed
friend istream& operator >>(istream& ins, DigitalTime& theObject);
//Overloads the >> operator for input values of type DigitalTime.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.
friend ostream& operator <<(ostream& outs, const DigitalTime& theObject);
//Overloads the << operator for output values of type DigitalTime.
//Precondition: If outs is a file output stream, then outs has already been
//connected to a file.
private:
int hour;
int minute;
};
Modified code for “dtime.cpp”:
//DISPLAY 12.2 Implementation File for DigitalTime
//Implementation file dtime.cpp (Your system may require some
//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>
#include <cctype>
#include <cstdlib>
#include "dtime.h"
using namespace std;
//These FUNCTION DECLARATIONS are for use in the definition of
//the overloaded input operator >>:
void readHour(istream& ins, int& theHour);
//Precondition: Next input in the stream ins is a time in 24-hour notation,
//like 9:45 or 14:45.
//Postcondition: theHour has been set to the hour part of the time.
//The colon has been discarded and the next input to be read is the minute.
void readMinute(istream& ins, int& theMinute);
//Reads the minute from the stream ins after readHour has read the hour.
int digitToInt(char c);
//Precondition: c is one of the digits '0' through '9'.
//Returns the integer for the digit; for example, digitToInt('3') returns 3.
bool operator ==(const DigitalTime& time1, const DigitalTime& time2)
{
return (time1.hour == time2.hour && time1.minute == time2.minute);
}
//Uses iostream and cstdlib:
DigitalTime::DigitalTime(int theHour, int theMinute)
{
if (theHour < 0 || theHour > 23 || theMinute < 0 || theMinute > 59)
{
cout << "Illegal argument to DigitalTime constructor.";
exit(1);
}
else
{
hour = theHour;
minute = theMinute;
}
}
DigitalTime::DigitalTime( ) : hour(0), minute(0)
{
//Body intentionally empty.
}
void DigitalTime::advance(int minutesAdded)
{
int grossMinutes = minute + minutesAdded;
minute = grossMinutes%60;
int hourAdjustment = grossMinutes/60;
hour = (hour + hourAdjustment)%24;
}
void DigitalTime::advance(int hoursAdded, int minutesAdded)
{
hour = (hour + hoursAdded)%24;
advance(minutesAdded);
}
//Uses iostream:
ostream& operator <<(ostream& outs, const DigitalTime& theObject)
{
outs << theObject.hour << ':';
if (theObject.minute < 10)
outs << '0';
outs << theObject.minute;
return outs;
}
//Uses iostream:
istream& operator >>(istream& ins, DigitalTime& theObject)
{
readHour(ins, theObject.hour);
readMinute(ins, theObject.minute);
return ins;
}
int digitToInt(char c)
{
return ( static_cast<int>(c) - static_cast<int>('0') );
}
//Uses iostream, cctype, and cstdlib:
void readMinute(istream& ins, int& theMinute)
{
char c1, c2;
ins >> c1 >> c2;
if (!(isdigit(c1) && isdigit(c2)))
{
cout << "Error illegal input to readMinute\n";
exit(1);
}
theMinute = digitToInt(c1)*10 + digitToInt(c2);
if (theMinute < 0 || theMinute > 59)
{
cout << "Error illegal input to readMinute\n";
exit(1);
}
}
//Uses iostream, cctype, and cstdlib:
void readHour(istream& ins, int& theHour)
{
char c1, c2;
ins >> c1 >> c2;
if ( !( isdigit(c1) && (isdigit(c2) || c2 == ':' ) ) )
{
cout << "Error illegal input to readHour\n";
exit(1);
}
if (isdigit(c1) && c2 == ':')
{
theHour = digitToInt(c1);
}
else //(isdigit(c1) && isdigit(c2))
{
theHour = digitToInt(c1)*10 + digitToInt(c2);
ins >> c2;//discard ':'
if (c2 != ':')
{
cout << "Error illegal input to readHour\n";
exit(1);
}
}
if ( theHour < 0 || theHour > 23 )
{
cout << "Error illegal input to readHour\n";
exit(1);
}
}
/*Function definition compute interval between the two values of type DigitalTime */
void DigitalTime::intervalSince(const DigitalTime& aPreviousTime, int& hoursInInterval, int& minutesInInterval) const
{
/* Initializes the value of hours in interval to "0" */
hoursInInterval = 0;
/* Initializes the value of minutes in interval to "0" */
minutesInInterval = 0;
/* Declare the variable for time difference */
DigitalTime diff;
/* Compute hour difference */
diff.hour = hour - aPreviousTime.hour;
/* Compute minutes difference */
diff.minute = minute - aPreviousTime.minute;
/* Check condition */
if (hour < aPreviousTime.hour || hour == aPreviousTime.hour && minute < aPreviousTime.minute)
{
//Display given message
cout << "Preceding time is in the preceding day" << endl;
diff.hour = 24 + (hour - aPreviousTime.hour);
}
/* Check the condition hour */
if (diff.minute < 0)
{
diff.hour--;
diff.minute = diff.minute + 60;
}
/* Store hours and minutes interval in respective variable */
hoursInInterval = diff.hour;
minutesInInterval = diff.minute;
return;
}
Modified “main.cpp”:
//Header file
#include <iostream>
//Header file for "dtime.h"
#include "dtime.h"
//For standard input and output
using namespace std;
//Main function
int main( )
{
//Declare time
DigitalTime current(5, 45), previous(2, 30);
//Declare "int" variables
int hours, minutes;
/* Call intervalSince() function */
current.intervalSince(previous, hours, minutes);
/* Display given time interval */
cout << "The time interval between " << previous << " and " << current << endl << "is " << hours << " hours and " << minutes << " minutes.\n";
return 0;
}
The time interval between 2:30 and 5:45
is 3 hours and 15 minutes.
Want to see more full solutions like this?
Chapter 12 Solutions
Problem Solving with C++ (9th Edition)
Additional Engineering Textbook Solutions
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
SURVEY OF OPERATING SYSTEMS
Starting Out With Visual Basic (8th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
- Explian this C program code. #include <stdio.h> void binary(unsigned int n) { if (n /2!=0) { binary(n /2); } printf("%d", n %2); } int main() { unsignedint number =33777; unsignedchar character ='X'; printf("Number: %u\n", number); printf("Binary: "); binary(number); printf("\nDecimal: %u\nHexadecimal: 0x%X\n\n", number, number); printf("Character: %c\n", character); printf("ASCII Binary: "); binary(character); printf("\nASCII Decimal: %u\nASCII Hexadecimal: 0x%X\n", character, character); return0; }arrow_forwardDesign a dynamic programming algorithm for the Longest Alternating Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest subsequence where the numbers alternate between being larger and smaller than their predecessor The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [3, 5, 4, 1, 3, 6, 5, 7, 3, 4] Output: 8 ([3, 5, 4, 6, 5, 7, 3, 4]) Example 2: Input: [4,7,2,5,8, 3, 8, 0, 4, 7, 8] Output: 8 ([4, 7, 2, 5, 3, 8, 0,4]) (Take your time with this for the subproblem for this one)arrow_forwardDesign a dynamic programming algorithm for the Coin-change problem described below: Input: An amount of money C and a set of n possible coin values with an unlimited supply of each kind of coin. Output: The smallest number of coins that add up to C exactly, or output that no such set exists. The algorithm must take O(n C) time. You must also write and explain the recurrence. Example 1: Input: C24, Coin values = = [1, 5, 10, 25, 50] Output: 6 (since 24 = 10+ 10+1+1 +1 + 1) Example 2: Input: C = 86, Coin values = [1, 5, 6, 23, 35, 46, 50] Output: 2 (since 86 = 46+35+5)arrow_forward
- Design a dynamic programming algorithm for the Longest Common Subsequence problem de- scribed below Input: Two strings x = x1x2 xm and y = Y1Y2... Yn Output: The length of the longest subsequence that is common to both x and y. . The algorithm must take O(m n) time. You must also write and explain the recurrence. (I want the largest k such that there are 1 ≤ i₁ < ... < ik ≤ m and 1 ≤ j₁ < ... < jk ≤ n such that Xi₁ Xi2 Xik = Yj1Yj2 ··· Yjk) Example 1: Input: x = 'abcdefghijklmnopqrst' and y = 'ygrhnodsh ftw' Output: 6 ('ghnost' is the longest common subsequence to both strings) Example 2: Input: x = 'ahshku' and y = ‘asu' Output: 3 ('asu' is the longest common subsequence to both strings)arrow_forwardDesign a dynamic programming algorithm for the problem described below Input: A list of numbers A = = [a1,..., an]. Output: A contiguous subsequence of numbers with the maximum sum. The algorithm must take O(n) time. You must also write and explain the recurrence. (I am looking for an i ≥ 1 and k ≥ 0 such that a + ai+1 + ···ai+k has the largest possible sum among all possible values for i and k.) Example 1: Input: A[5, 15, -30, 10, -5, 40, 10]. Output: [10, 5, 40, 10] Example 2: Input: A = [7, 5, 7, 4, -20, 6, 9, 3, -4, -8, 4] Output: [6,9,3]arrow_forwardDesign a dynamic programming algorithm for the Longest Increasing Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest increasing subsequence among these integers. The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [5, 3, 6, 8, 4, 6, 2, 7, 9, 5] Output: 5 ([3, 4, 6, 7, 9]) Example 2: Input: [12, 42, 66, 73, 234, 7, 543, 16] Output: 6 ([42, 66, 73, 234, 543])arrow_forward
- Design a dynamic programming algorithm for the Subset Sum problem described below: Input: A set of n integers A and an integer s Output: A subset of A whose numbers add up to s, or that no such set exists. The algorithm must take O(n·s) time. You must also write and explain the recurrence. Example 1: Input: A = {4, 7, 5, 2, 3}, s = 12 Output: {7,2,3} Example 2: Input: A{4, 7, 5,3}, s = 6 Output: 'no such subset'arrow_forwardTECNOLOGIE DEL WEB 2023/2023 (VER 1.1) Prof. Alfonso Pierantonio 1. Project Requirements The project consists in designing and implementing a Web application according to the methodology and the technologies illustrated and developed during the course. This document describe cross-cutting requirements the application must satisfy. The application must be realized with a combination of the following technologies: PHP MySQL HTML/CSS JavaScript, jQuery, etc templating The requirements are 2. Project size The application must have at least 18 SQL tables The number of SQL tables refers to the overall number of tables (including relation normalizations). 3. Methodology The application must be realized by adopting separation of logics, session management, and generic user management (authentication/permissions). Missing one of the above might correspond to a non sufficient score for the project. More in details: 3.1 Separation of Logics The separation of logics has to be realizse by using…arrow_forwardWrite a C program to calculate the function sin(x) or cos(x) using a Taylor series expansion around the point 0. In other words, you will program the sine or cosine function yourself, without using any existing solution. You can enter the angles in degrees or radians. The program must work for any input, e.g. -4500° or +8649°. The function will have two arguments: float sinus(float radians, float epsilon); For your own implementation, use one of the following relations (you only need to program either sine or cosine, you don't need both): Tip 1: Of course, you cannot calculate the sum of an infinite series indefinitely. You can see (if not, look in the program) that the terms keep getting smaller, so there will definitely be a situation where adding another term will not change the result in any way (see problem 1.3 – machine epsilon). However, you can end the calculation even earlier – when the result changes by less than epsilon (a pre-specified, sufficiently small number, e.g.…arrow_forward
- Write a C program that counts the number of ones (set bits) in the binary representation of a given number. Example:Input: 13 (binary 1101)Output: 3 unitsarrow_forwardI need help to resolve or draw the diagrams. thank youarrow_forwardYou were requested to design IP addresses for the following network using the addressblock 166.118.10.0/8, connected to Internet with interface 168.118.40.17 served by the serviceprovider with router 168.118.40.1/20.a) Specify an address and net mask for each network and router interface in the table provided. b) Give the routing table at Router 1.c) How will Router 1 route the packets with destinationi) 168.118.10.5ii) 168.118.10.103iii) 168.119.10.31iii) 168.118.10.153arrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning




