Concept explainers
The figure shows three particles with the same mass m, all moving with the same constant speed v. Particle (1) moves in a circle of radius R about the point P, article (2) in a straight line whose closest approach to point P is the same as the circle’s radius R, and particle (3) in a straight line that passes through P. Which of these statements correctly describes the magnitudes of the particles’ angular momenta?
- a. L1 = L2 = L3 ≠ 0;
- b. L1 > 0, L2 = L3 = 0;
- c. L1 > L2 > L3 = 0;
- d. L2 = L1 ≠ 0, L3 = 0
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Essential University Physics
Additional Science Textbook Solutions
Microbiology: An Introduction
Human Anatomy & Physiology (2nd Edition)
Anatomy & Physiology (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Applications and Investigations in Earth Science (9th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- Consider the Earth and the Moon as a two-particle system. a. Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon.) b. Plot the scalar component of g as a function of distance from the center of the Earth.arrow_forwardCase Study For each acceleration listed, state the position and velocity of the disk in Crall and Whipples experiment (Figs. 16.316.5). There may be more than one possible answer for each given acceleration. a. ay = 3.8 m/s2 b. ay = 3.8 m/s2 c. ay = 0arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forward
- A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?arrow_forwardA projectile of mass m moves to the right with a speed vi (Fig. P10.81a). The projectile strikes and sticks to the end of a stationary rod of mass M, length d, pivoted about a frictionless axle perpendicular to the page through O (Fig. P10.81b). We wish to find the fractional change of kinetic energy in the system due to the collision. (a) What is the appropriate analysis model to describe the projectile and the rod? (b) What is the angular momentum of the system before the collision about an axis through O? (c) What is the moment of inertia of the system about an axis through O after the projectile sticks to the rod? (d) If the angular speed of the system after the collision is , what is the angular momentum of the system after the collision? (e) Find the angular speed after the collision in terms of the given quantities. (f) What is the kinetic energy of the system before the collision? (g) What is the kinetic energy of the system after the collision? (h) Determine the fractional change of kinetic energy due to the collision. Figure P10.81arrow_forward
- A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.510-3s , radius 10.0 km, and mass 2.81030kg . The pulsar’s rotational period will increase over time due to the release of electromagnetic radiation, which doesn’t change its radius but reduces its rotational energy. (a) What is the angular momentum of the pulsar? (b) Suppose the angular velocity decreases at a rate of 1014rad/s2 . What is the torque on the pulsar?arrow_forwardAn airplane of mass 4.0104kg flies horizontally at an altitude of 10 km with a constant speed of 250 m/s relative to Earth. (a) What is the magnitude of the airplane’s angular momentum relative to a ground observer directly below the plane? (b) Does the angular momentum change as the airplane flies along a constant altitude?arrow_forwardIn (Figure 1), take m₁ = 3.4 kg and m² = 4.2 kg. Figure 5m 8 m/s 4 m m MAD 1.5 m 0 2 m 4 m ma B 30° 1m2 6 m/s X 1 of 1 Part A Determine the z component of the angular momentum Ho of particle A about point O. Express your answer in kilogram-meters squared per second to three significant figures. ΑΣΦΗ Πvec (Ho): = 124.19 Submit Previous Answers Request Answer * Incorrect; Try Again; 2 attempts remaining Part B (Ho): = Determine the z component of the angular momentum Ho of particle B about point O. Suppose that Express your answer in kilogram-meters squared per second to three significant figures. ΕΠΙΑΣΦΠ Submit vec Provide Feedback Previous Answers Request Answer * Incorrect; Try Again; 5 attempts remaining ? kg.m²/s ? kg.m²/sarrow_forward
- Problems 2: Q2.1: Knowing that the distance AB is 250 mm determine the maximum moment about ( B) which can be caused by the ( 150 N ) force . In what direction should the force act ? 20° 150 N Barrow_forwardA ring (mass 2 M, radius 2 R) rotates in a CCW direction with an initial angular speed 1 ω. A disk (mass 4 M, radius 1 R) rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction. What is the initial angular momentum Li of the ring+disk system? Write your answer in terms of MR2ω. What is the final angular velocity ωf of the ring+disk system? Write your answer in terms of ω.arrow_forwardA ring (mass 4 M, radius 1 R) rotates in a CCW direction with an initial angular speed 2 ω. A disk (mass 2 M, radius 2 R) rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction.What is the initial angular momentum Li of the ring+disk system? Write answer in terms of MR2ω. What is the final angular velocity ωf of the ring+disk system? Write your answer in terms of ω.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning