In Chapter 10, we saw that electronegativity differences determine whether bond dipoles exist in a molecule and that molecular shape determines whether bond dipoles cancel (nonpolar molecules) or combine to produce a resultant dipole moment (polar molecules). Thus, the ozone molecule, O 2 , has no bond dipoles because all the atoms are alike. Yet, O 2 does have a resultant dipole moment: µ = 0.534 D . The electrostatic potential map for ozone is shown below. Use the electrostatic potential map to decide the direction of the dipole. Using the ideas of delocalized bonding in molecules, can you rationalize this electrostatic potential map?
In Chapter 10, we saw that electronegativity differences determine whether bond dipoles exist in a molecule and that molecular shape determines whether bond dipoles cancel (nonpolar molecules) or combine to produce a resultant dipole moment (polar molecules). Thus, the ozone molecule, O 2 , has no bond dipoles because all the atoms are alike. Yet, O 2 does have a resultant dipole moment: µ = 0.534 D . The electrostatic potential map for ozone is shown below. Use the electrostatic potential map to decide the direction of the dipole. Using the ideas of delocalized bonding in molecules, can you rationalize this electrostatic potential map?
Solution Summary: The author explains that the direction of the dipole of ozone should be determined using the electrostatic potential map.
In Chapter 10, we saw that electronegativity differences determine whether bond dipoles exist in a molecule and that molecular shape determines whether bond dipoles cancel (nonpolar molecules) or combine to produce a resultant dipole moment (polar molecules). Thus, the ozone molecule,
O
2
, has no bond dipoles because all the atoms are alike. Yet,
O
2
does have a resultant dipole moment:
µ
=
0.534
D
. The electrostatic potential map for ozone is shown below. Use the electrostatic potential map to decide the direction of the dipole. Using the ideas of delocalized bonding in molecules, can you rationalize this electrostatic potential map?
く
Predicting the pr
Predict the major products of the following organic reaction:
Δ
Some important notes:
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
?
Click and drag to start drawing a structure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell