The decomposition of hydrogen iodide on finely divided gold at 150°C is zero order with respect to HI. The rate defined below is constant at 1.20 × 10¬4 mol/L·s. Au 2 HI(9) Н2 (9) + 12(9) A[HI] = k = 1.20 × 10¬ª mol/L · s At Rate = - a. If the initial HI concentration was 0.500 mol/L, calculate the concentration of HI at 23 minutes after the start of the reaction. Concentration = M b. How long will it take for all of the 0.500 M HI to decompose? Time = min
The decomposition of hydrogen iodide on finely divided gold at 150°C is zero order with respect to HI. The rate defined below is constant at 1.20 × 10¬4 mol/L·s. Au 2 HI(9) Н2 (9) + 12(9) A[HI] = k = 1.20 × 10¬ª mol/L · s At Rate = - a. If the initial HI concentration was 0.500 mol/L, calculate the concentration of HI at 23 minutes after the start of the reaction. Concentration = M b. How long will it take for all of the 0.500 M HI to decompose? Time = min
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![The decomposition of hydrogen iodide on finely divided gold at 150°C is zero order with respect to
HI. The rate defined below is constant at
1.20 x 10-4 mol/L-s.
Au
2 HI(g) → H2 (g) + I2 (g)
A[HI]
Rate
k =
= 1.20 × 10- mol/L · s
At
a. If the initial
HI concentration was 0.500 mol/L, calculate the concentration of
HI at 23 minutes after the start of the reaction.
Concentration =
M
b. How long will it take for all of the 0.500 M
HI to decompose?
Time =
min](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fed7d8611-f555-47eb-8eb5-98565b9bae06%2F06f0bd61-cace-4e6f-b1d1-bf102198c456%2F1wmts9_processed.png&w=3840&q=75)
Transcribed Image Text:The decomposition of hydrogen iodide on finely divided gold at 150°C is zero order with respect to
HI. The rate defined below is constant at
1.20 x 10-4 mol/L-s.
Au
2 HI(g) → H2 (g) + I2 (g)
A[HI]
Rate
k =
= 1.20 × 10- mol/L · s
At
a. If the initial
HI concentration was 0.500 mol/L, calculate the concentration of
HI at 23 minutes after the start of the reaction.
Concentration =
M
b. How long will it take for all of the 0.500 M
HI to decompose?
Time =
min
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY