Fluid Mechanics Fundamentals And Applications
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 1CP

Discuss how nondimensalizsionalization of the Navier-Stokes equation is helpful in obtaining approximate solutions. Give an example.

Expert Solution & Answer
Check Mark
To determine

The advantages of solving Navier Strokes equation using non-dimensionalization.

Explanation of Solution

Non-dimensionalization of Navier-Stokes equation helps in obtaining approximate solutions. This can be explained from below mentioned points:

  1. Non-dimensionalization helps in reducing the complexity of any equation.
  2. It helps in removing the dimensions of the all the quantities present.
  3. The primary function is to make the dimension of the quantities present in Navier-Stokes equation unity.
  4. It calculates small quantities with respect to a large quantity.
  5. For example- If the value of Strouhal number is less with respect to Reynolds number, we can ignore the term containing Strouhal number whereas the respective value of Reynolds number must retain.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This is an old practice exam. Fce = 110lb and FBCD = 62 lb but why
Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 =6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm S 133 mm 140 mm Please solve the question above I solved the question but I'm sure the answer is wrong the link : https://drive.google.com/file/d/1w5UD2EPDiaKSx3W33aj Rv0olChuXtrQx/view?usp=sharing
Q2: (15 Marks) A water-LiBr vapor absorption system incorporates a heat exchanger as shown in the figure. The temperatures of the evaporator, the absorber, the condenser, and the generator are 10°C, 25°C, 40°C, and 100°C respectively. The strong liquid leaving the pump is heated to 50°C in the heat exchanger. The refrigerant flow rate through the condenser is 0.12 kg/s. Calculate (i) the heat rejected in the absorber, and (ii) the COP of the cycle. Yo 8 XE-V lo 9 Pc 7 condenser 5 Qgen PG 100 Qabs Pe evaporator PRV 6 PA 10 3 generator heat exchanger 2 pump 185 absorber

Chapter 10 Solutions

Fluid Mechanics Fundamentals And Applications

Ch. 10 - Prob. 11PCh. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 33PCh. 10 - Estimate the speed at which you would need to swim...Ch. 10 - Prob. 36PCh. 10 - Prob. 38CPCh. 10 - Prob. 39CPCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Ch. 10 - Prob. 48PCh. 10 - Prob. 49CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 - Ch. 10 - Prob. 53CPCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 - Consider a steady, two-dimensional,...Ch. 10 - Prob. 61PCh. 10 - Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 - Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Ch. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 - Prob. 82CPCh. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 88PCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 90EPCh. 10 - Prob. 91PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 94PCh. 10 - Prob. 95EPCh. 10 - Prob. 96EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 101PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 103PCh. 10 - Prob. 104PCh. 10 - Prob. 105PCh. 10 - Prob. 106EPCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 108PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 112PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 117PCh. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 119PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138PCh. 10 - Prob. 139P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY