EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10Q
Mammals that depend on being able to run fast have slender lower legs with flesh and muscle concentrated high, close to the body (Fig. 10–42). On the basis of rotational dynamics, explain why this distribution of mass is advantageous.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Mammals that depend on being able to run fast have slender
lower legs with flesh and muscle concentrated high, close to
the body (Fig. 8–33). On the basis of rotational dynamics,
explain why this distribution of mass is advantageous.
FIGURE 8–33
Question 6.
A gazelle.
Is there a difference between rotational equilibrium, rotational dynamics, and rotational motion? Would you mind citing a few examples as well? Thank you so much.
13. Why do tightrope walkers (Fig. 8–34) carry a long,
rod?
narrow
FIGURE 8–34 Question 13.
Chapter 10 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 10.1 - In Example 103, we found that the carousel, after...Ch. 10.4 - Two forces (FB = 20 N and FA = 30 N) are applied...Ch. 10.7 - In Figs. 1020f and g, the moments of inertia for a...Ch. 10.8 - Estimate the energy stored in the rotational...Ch. 10.9 - Return to the Chapter-Opening Question, p. 248,...Ch. 10.9 - Find the acceleration a of a yo-yo whose spindle...Ch. 10 - Prob. 1QCh. 10 - Suppose a disk rotates at constant angular...Ch. 10 - Could a nonrigid object be described by a single...Ch. 10 - Prob. 4Q
Ch. 10 - Prob. 5QCh. 10 - Prob. 6QCh. 10 - Can a small force ever exert a greater torque than...Ch. 10 - Why is it more difficult to do a sit-up with your...Ch. 10 - If the net force on a system is zero, is the net...Ch. 10 - Mammals that depend on being able to run fast have...Ch. 10 - Prob. 11QCh. 10 - Prob. 12QCh. 10 - Prob. 13QCh. 10 - Prob. 14QCh. 10 - Two inclines have the same height but make...Ch. 10 - Two spheres look identical and have the same mass....Ch. 10 - A sphere and a cylinder have the same radius and...Ch. 10 - Two solid spheres simultaneously start rolling...Ch. 10 - Prob. 1MCQCh. 10 - Prob. 2MCQCh. 10 - Prob. 3MCQCh. 10 - Prob. 4MCQCh. 10 - Prob. 6MCQCh. 10 - Prob. 7MCQCh. 10 - Prob. 8MCQCh. 10 - Prob. 9MCQCh. 10 - Prob. 10MCQCh. 10 - Prob. 11MCQCh. 10 - Prob. 12MCQCh. 10 - Prob. 14MCQCh. 10 - (I) Express the following angles in radians: (a)...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - (I) The blades in a blender rotate at a rate of...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - (II) A rotating merry-go-round makes one complete...Ch. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - (II) Calculate the angular velocity of the Earth...Ch. 10 - Prob. 14PCh. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - (II) A turntable of radius R1 is turned by a...Ch. 10 - Prob. 18PCh. 10 - (I) A centrifuge accelerates uniformly front rest...Ch. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - (II) Two blocks, each of mass m, are attached to...Ch. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - (I) Estimate the moment of inertia of a bicycle...Ch. 10 - Prob. 35PCh. 10 - (II) An oxygen molecule consists of two oxygen...Ch. 10 - Prob. 37PCh. 10 - (II) The forearm in Fig. 1052 accelerates a 3.6-kg...Ch. 10 - (II) Assume that a 1.00-kg ball is thrown solely...Ch. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - (II) A dad pushes tangentially on a small...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - (II) When discussing moments of inertia,...Ch. 10 - (II) Two blocks are connected by a light string...Ch. 10 - Prob. 51PCh. 10 - (III) A hammer thrower accelerates the hammer...Ch. 10 - (I) Use the parallel-axis theorem to show that the...Ch. 10 - (II) Determine the moment of inertia of a 19-kg...Ch. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - (I) Estimate the kinetic energy of the Earth with...Ch. 10 - (II) A rotating uniform cylindrical platform of...Ch. 10 - Prob. 65PCh. 10 - (II) A Uniform thin rod of length l and mass M is...Ch. 10 - Prob. 67PCh. 10 - (III) A 2.30-m-long pole is balanced vertically on...Ch. 10 - Prob. 69PCh. 10 - (I) A bowling ball of mass 7.3kg and radius 9.0 cm...Ch. 10 - Prob. 71PCh. 10 - (II) A narrow but solid spool of thread has radius...Ch. 10 - (II) A solid rubber ball rests on the floor of a...Ch. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - (II) A ball of radius r0 rolls on the inside of a...Ch. 10 - (III) A small sphere of radius r0 = 1.5 cm rolls...Ch. 10 - (III) A wheel with rotational inertia I=12MR2...Ch. 10 - (III) The 1100-kg mass of a car includes four...Ch. 10 - (I) A rolling hall slows down because the normal...Ch. 10 - Prob. 81GPCh. 10 - On a 12.0-cm-diameter audio compact disc (CD),...Ch. 10 - (a) A yo-yo is made of two solid cylindrical...Ch. 10 - Prob. 84GPCh. 10 - Prob. 85GPCh. 10 - A large spool of rope rolls on the ground with the...Ch. 10 - Bicycle gears: (a) How is the angular velocity R...Ch. 10 - Prob. 88GPCh. 10 - Figure 1065 illustrates an H2O molecule. The O H...Ch. 10 - Prob. 90GPCh. 10 - Prob. 91GPCh. 10 - Prob. 92GPCh. 10 - Prob. 93GPCh. 10 - Prob. 94GPCh. 10 - Prob. 96GPCh. 10 - A marble of mass m and radius r rolls along the...Ch. 10 - The density (mass per unit length) of a thin rod...Ch. 10 - If a billiard ball is hit in just the right way by...Ch. 10 - Prob. 100GPCh. 10 - When bicycle and motorcycle riders pop a wheelie,...Ch. 10 - A crucial part of a piece of machinery starts as a...Ch. 10 - Prob. 103GPCh. 10 - Prob. 104GPCh. 10 - Prob. 105GPCh. 10 - A thin uniform stick of mass M and length l is...Ch. 10 - Prob. 107GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Repeat Example 10.15 in which the stick is free to have translational motion as well as rotational motion.arrow_forwardAn automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardWhat is rotational non-impulse?arrow_forward
- A small mass m on a string is rotating without friction in acircle. The string is shortened by pulling it through the axisof rotation without any external torque, Fig. 8–39. Whathappens to the tangential velocity of the object?(a) It increases.(b) It decreases.(c) It remains the same.arrow_forward(II) A potter is shaping a bowl on a potter's wheel rotating at constant angular velocity of 1.6 rev/s (Fig. 8–48). The friction force between her hands and the clay is 1.5 N total. (a) How large is her torque on the wheel, if the diameter of the bowl is 9.0 cm? (b) How long would it take for the potter's wheel to stop if the only torque acting on it is due to the potter's hands? The moment of inertia of the wheel and the bowl is 0.11 kg•m². FIGURE 8–48 Problem 40.arrow_forwardThe solid dot shown in Fig. 8–36 is a pivot point. The board can rotate about the pivot. Which force shown exerts the largest magnitude torque on the board? (e) 500 N • (d) 800 N (b) 500 N (c) 500 N (a) 1000 N FIGURE 8–36 MisConceptual Question 4.arrow_forward
- 76. Round and Round Little Jay is enjoying his first ride on a merry-go- round. (He is riding a stationary horse rather than one that goes up Av at 4 = 0 %3D and down.) A schematic view of the merry-go-round as seen from above is shown in Fig. 11-47a with a conve- nient coordinate system. A bit after the merry-go-round has started and is going around uniformly, we start our clock. Little Jay's position and velocity at time t dot and arrow. At t = 0 is the net force acting on Jay equal to zero? If it is, write "Yes" and give a reason why you think so. If it isn't, write “No" and specify the type of force and the object responsible for exerting it. FIGURE 11-47a Problem 76. 0 are shown as a %3D %3D For the next six parts, specify which of the graphs shown in Fig. 11-47b could represent the indicated variable for Jay's motion. If none of the graphs work, write "N." (A (B) 0. -Time Time 0. (D) 0. Time 0 Time E F Time Time FIGURE 11-47b Problem 76. (a) The x-component of Jay's velocity (b)…arrow_forwardn41 G0 In Fig. 10-37, two particles, each with mass m = 0.85 kg, are fas- tened to each other, and to a rotation axis at 0, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates M. Rotation axis around the rotation axis with the an- gular speed w = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? Figure 10-37 Problem 41.arrow_forwardA small mass m on a string is rotating without friction in a circle. The string is shortened by pulling it through the axis of rotation without any external torque, Fig. 8–39. What happens to the angular velocity of the object? (a) It increases. (b) It decreases. (c) It remains the same. FIGURE 8–39 MisConceptual Questions 10 and 11.arrow_forward
- (II) Two masses, mA = 35.0 kg and mB = 38.0 kg, are connected by a rope that hangs over a pulley (as in Fig. 10-59). The pulley is a uniform cylinder of radius 0.381 m and mass 3.1 kg. Initially ma is on the ground and mB rests 2.5 m above the ground. If the system is released, use conservation of energy to deter- mine the speed of mB just before it strikes the ground. Assume the pulley bearing is frictionless. %3D RO mB mA 2.5 m FIGURE 10-59 ba Problem 67. inoni lo (IID) A.arrow_forward. (II) Assume that a 1.00-kg ball is thrown solely by the action of the forearm, which rotates about the elbow joint under the actionof the triceps muscle, Fig. 8–46. The ball is accelerated uniformlyfrom rest to 8.5 m/s in 0.38 s, at which point it is released. Calculate (a) the angular acceleration of the arm, and (b) the force required of the triceps muscle. Assume that the forearm has a mass of 3.7 kg and rotates like a uniform rod about an axis at its end.arrow_forward17-102. The 25-lb slender rod has a length of 6 ft. Using a collar of negligible mass, its end A is confined to move along the smooth circular bar of radius 3 V2 ft. End B rests on the floor, for which the coefficient of kinetic friction is µg = 0.4. If the bar is released from rest when 6 = 30°, determine the angular acceleration of the bar at this instant. 6 ft 3N2 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY