Concept explainers
In a work situation where an electrician’s hands get wet while operating a 120-volt, corded drill, which of the following would be true? (Objective 1-1)
a. Body resistance increases, and any shock would be mild.
b. Body resistance remains the same, and there is no danger as Long as rubber boots are worn.
c. Body resistance is substantially decreased, and severe shock could occur.
d. There is no danger as Long as a three-prong plug is used.
The true statement for the situation where an electrician’s hands get wet while operating a
Answer to Problem 1RQ
Option (c) Body resistance is substantially decreased, and severe shock could occur.
Explanation of Solution
Introduction:
According to the Ohm’s law, the relation between the current, voltage, and resistance is given by,
Here, the current is in amperes, voltage is in volts, and resistance is measured in Ohm’s.
The flow of current through any material depends upon the resistance provided by the material. The higher is the circuit resistance, the lower the current flow that a voltage can push through the circuit and vice-versa.
Dry skin offers much more resistance in comparison to the wet body. This means that higher the resistance value, the more opposition to the current flow through the body.
The following table shows the value of resistance with respect to the different conditions:
Skin Condition | Resistance |
Dry skin | |
Sweaty hands | |
In water |
As shown in the above table, the value of resistance for wet hands is very less so if in a work situation where an electrician’s hands get wet while operating a
As shown in the above table, the value of resistance for wet hands is very less, so the shock will not be mild. Thus, option (a) is incorrect.
Therefore, the body resistance will not remain the same if the hand gets wet. Thus, option (b) is incorrect.
The electrician will always be in danger if his hands are wet. Thus, option (d) is incorrect.
Conclusion:
Therefore, the Option (c) Body resistance is substantially decreased, and severe shock could occur is best suitable answer for the given statement.
Want to see more full solutions like this?
Chapter 1 Solutions
Residential Construction Academy: House Wiring (MindTap Course List)
- a. Determine the net area of the W12x16(Ag=4.71in2) shown in Fig. Assuming that the holes are for 1-in bolts. b. compute the design strength if A36 is used W12 x 16 d-12.00 in 4-0.220 in 3 in 3 in BO HO by-3.99 in 3 in 3 in DO E 2 in 2 inarrow_forward止 Q.1 Using the lightest W section shape to design the compression member AB shown in Fig. below, the concentrated service dead load and live load is PD-40kips and PL 150kips respectively. The beams and columns are oriented about the major axis and the columns are braced at each story level for out-of-plan buckling. Assume that the same section is used for columns. Use Fy-50 ksi. 32456 Aarrow_forward02. Design a W shape beam is used to support the loads for plastered floor, shown in Figure. Lateral bracing is supplied only at the ends. Depend LRFD and Steel Fy=50ksi. Note: The solution includes compute C, Check deflection at center of beam as well as shear capacity) B P10.5 P=140 W C Hing Hing 159 A 15.ftarrow_forward
- س (١) الشكل المرفق لقطعة أرض مستطيلة بعدها بالاتجاه الأفقي ١٢ متر ماهو مقياس الرسم لهذة الخارطة وماهو البعد بالاتجاه العمودي على الأرض . س (۲) ماهي انواع المساحة من حيث الدقة . س ۳) طريق يحتوي على ثلاث محطات المسافات بينهم متساوية المحطة الأولى A = 233457.8 متر المحطة الثانية 8 = 23.6+278 متر ماهي المحطة الاخيرة ) 12 marrow_forwardPlease solve with drawingarrow_forward止 Q.1 Using the lightest W section shape to design the compression member AB shown in Fig. below, the concentrated service dead load and live load is PD-40kips and PL 150kips respectively. The beams and columns are oriented about the major axis and the columns are braced at each story level for out-of-plan buckling. Assume that the same section is used for columns. Use Fy-50 ksi. 32456 Aarrow_forward
- Residential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781337402415Author:Gregory W FletcherPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,