What is the displacement of an object on the interval 0 ≤ t ≤ 9 if its velocity is V (t) = 6 -√√3t? O 21.52 O 22.62 O 22.82 O 23.42

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

Please explain how to solve, thank you!

### Displacement Calculation Based on Velocity Function

#### Question:
What is the displacement of an object on the interval \(0 \leq t \leq 9\) if its velocity is \( v(t) = 6 - \sqrt{ 3t } \)?

#### Multiple Choice Options:
- 21.52
- 22.62
- 22.82
- 23.42

To calculate the displacement of the object, we need to integrate the given velocity function \( v(t) = 6 - \sqrt{ 3t } \) over the interval from \( t = 0 \) to \( t = 9 \).

**Detailed Solution:**

The velocity function is given by \( v(t) = 6 - \sqrt{ 3t } \). To find the displacement, we need to compute the definite integral of this function from 0 to 9.

\[
s = \int_{0}^{9} (6 - \sqrt{3t}) \, dt
\]

Let's break this down step by step:

1. **Integral of the Constant Term:**
   \[
   \int 6 \, dt = 6t
   \]

2. **Integral of the Square Root Term:**
   \[
   \int -\sqrt{3t} \, dt
   \]
   Rewrite \(-\sqrt{3t}\) as \(-\sqrt{3} \cdot \sqrt{t}\):
   \[
   \int -\sqrt{3} \cdot t^{1/2} \, dt
   \]
    
   Using the power rule of integration:
   \[
   \int t^{1/2} \, dt = \frac{2}{3}t^{3/2}
   \]
   So, 
   \[
   \int -\sqrt{3} \cdot t^{1/2} \, dt = -\sqrt{3} \cdot \frac{2}{3}t^{3/2} = -\frac{2\sqrt{3}}{3} t^{3/2}
   \]

Combining the two parts, we get:

\[
\int_{0}^{9} (6 - \sqrt{3t}) \, dt = \left[ 6t - \frac{2\sqrt{3}}{
Transcribed Image Text:### Displacement Calculation Based on Velocity Function #### Question: What is the displacement of an object on the interval \(0 \leq t \leq 9\) if its velocity is \( v(t) = 6 - \sqrt{ 3t } \)? #### Multiple Choice Options: - 21.52 - 22.62 - 22.82 - 23.42 To calculate the displacement of the object, we need to integrate the given velocity function \( v(t) = 6 - \sqrt{ 3t } \) over the interval from \( t = 0 \) to \( t = 9 \). **Detailed Solution:** The velocity function is given by \( v(t) = 6 - \sqrt{ 3t } \). To find the displacement, we need to compute the definite integral of this function from 0 to 9. \[ s = \int_{0}^{9} (6 - \sqrt{3t}) \, dt \] Let's break this down step by step: 1. **Integral of the Constant Term:** \[ \int 6 \, dt = 6t \] 2. **Integral of the Square Root Term:** \[ \int -\sqrt{3t} \, dt \] Rewrite \(-\sqrt{3t}\) as \(-\sqrt{3} \cdot \sqrt{t}\): \[ \int -\sqrt{3} \cdot t^{1/2} \, dt \] Using the power rule of integration: \[ \int t^{1/2} \, dt = \frac{2}{3}t^{3/2} \] So, \[ \int -\sqrt{3} \cdot t^{1/2} \, dt = -\sqrt{3} \cdot \frac{2}{3}t^{3/2} = -\frac{2\sqrt{3}}{3} t^{3/2} \] Combining the two parts, we get: \[ \int_{0}^{9} (6 - \sqrt{3t}) \, dt = \left[ 6t - \frac{2\sqrt{3}}{
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning