Water is the working fluid in an ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 1400 lbf/in.2 and 1000°F and expands to 120 lbf/in.2, where some of the steam is extracted and divested to the open feedwater heater operating at 120 lbf/in.2 The remaining steam expands through the second-stage turbine to the condenser pressure of 10 lbf/in.² Saturated liquid exits the open feedwater heater at 120 lbf/in.2 The net power output of the cycle is 1 x 10⁹ Btu/h. Determine for the cycle: (a) the mass flow rate of steam entering the first stage of the turbine, in lb/h. (b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator. (c) the percent thermal efficiency.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
6. please answer asap
Water is the working fluid in an ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 1400
lbf/in.2 and 1000°F and expands to 120 lbf/in.2, where some of the steam is extracted and divested to the open feedwater heater
operating at 120 lbf/in.2 The remaining steam expands through the second-stage turbine to the condenser pressure of 10 lbf/in.²
Saturated liquid exits the open feedwater heater at 120 lbf/in.2 The net power output of the cycle is 1 x 10° Btu/h.
Determine for the cycle:
(a) the mass flow rate of steam entering the first stage of the turbine, in lb/h.
(b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator.
(c) the percent thermal efficiency.
Transcribed Image Text:Water is the working fluid in an ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 1400 lbf/in.2 and 1000°F and expands to 120 lbf/in.2, where some of the steam is extracted and divested to the open feedwater heater operating at 120 lbf/in.2 The remaining steam expands through the second-stage turbine to the condenser pressure of 10 lbf/in.² Saturated liquid exits the open feedwater heater at 120 lbf/in.2 The net power output of the cycle is 1 x 10° Btu/h. Determine for the cycle: (a) the mass flow rate of steam entering the first stage of the turbine, in lb/h. (b) the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator. (c) the percent thermal efficiency.
Determine for the cycle the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator.
Qin
= i
!
Btu/h
Transcribed Image Text:Determine for the cycle the rate of heat transfer, in Btu/h, to the working fluid passing through the steam generator. Qin = i ! Btu/h
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY