Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicated). Find (a) the image distance iz for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real or virtual, (d) inverted from object O or noninverted, and (e) on the same side of lens 2 as object O or on the opposite side. (a) (b) (c) (d) (e) P1 Lens 1 d Lens 2 i2 M RV I/NI Side +21 C, 9.3 9.3 C, 7.7
Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicated). Find (a) the image distance iz for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real or virtual, (d) inverted from object O or noninverted, and (e) on the same side of lens 2 as object O or on the opposite side. (a) (b) (c) (d) (e) P1 Lens 1 d Lens 2 i2 M RV I/NI Side +21 C, 9.3 9.3 C, 7.7
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps