Suppose an electron (g = - e = -1.6x 10-19 C.m=9.1 x 10-31 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K +U = 0 K = -U 1 Since K= 27 and using the formula for potential energy above, we arrive at an equation for speed: V = ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s %3D

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Fill in the blanks.

-31
Suppose an electron (g = - e = - 1.6x 10-19C.m 9.1 x10 kg) is accelerated from rest through a potential
difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures.
The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation:
U =
Assuming all potential energy U is converted to kinetic energy K,
K+ U = 0
K= -U
Since K=
mv and using the formula for potential energy above, we arrive at an equation for speed:
2
V = (
1/2
Plugging in values, the value of the electron's speed is:
x 107 m/s
V=
Transcribed Image Text:-31 Suppose an electron (g = - e = - 1.6x 10-19C.m 9.1 x10 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K+ U = 0 K= -U Since K= mv and using the formula for potential energy above, we arrive at an equation for speed: 2 V = ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s V=
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Unit conversion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON