In a power plant, water vapor with a flow rate of 35 kg / s enters the adiabatic turbine at a pressure of 10 MPa and a temperature of 500° C, and comes out at a pressure of 150 kPa and 92% dryness at a speed of 200 m / s. The velocity at the turbine inlet is negligibly small compared to the outlet. The water coming out of the turbine is cooled in the condenser by cooling water whose inlet temperature is 20° C. At the condenser outlet, the cooling water temperature rises to 40 ° C, the steam pressure is 100 kPa, the temperature is 60 ° C. Coolant can be regarded as compressed liquid. a) Power generated in the turbine b)Heat transferred to the cooling water in the condenser c)Calculate the cooling water flow
In a power plant, water vapor with a flow rate of 35 kg / s enters the adiabatic turbine at a pressure of 10 MPa and a temperature of 500° C, and comes out at a pressure of 150 kPa and 92% dryness at a speed of 200 m / s. The velocity at the turbine inlet is negligibly small compared to the outlet. The water coming out of the turbine is cooled in the condenser by cooling water whose inlet temperature is 20° C. At the condenser outlet, the cooling water temperature rises to 40 ° C, the steam pressure is 100 kPa, the temperature is 60 ° C. Coolant can be regarded as compressed liquid.
a) Power generated in the turbine
b)Heat transferred to the cooling water in the condenser
c)Calculate the cooling water flow
Step by step
Solved in 3 steps with 3 images