Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem Statement:
**Objective:** Find the standard equation of the sphere with the given characteristics.
**Given Data:**
- Endpoints of a diameter of the sphere: \( (0, 0, 8) \) and \( (4, 6, 0) \)
### Solution:
To find the equation of the sphere, follow these steps:
1. **Determine the center of the sphere (C):**
- The center of the sphere is the midpoint of the diameter. To find the midpoint, use the midpoint formula for coordinates:
\[
\text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right)
\]
- Plugging in the given endpoints \((0, 0, 8)\) and \((4, 6, 0)\):
\[
C = \left( \frac{0 + 4}{2}, \frac{0 + 6}{2}, \frac{8 + 0}{2} \right) = (2, 3, 4)
\]
2. **Determine the radius (r) of the sphere:**
- The radius is half the length of the diameter. First, calculate the distance between the two endpoints using the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
\]
- For endpoints \((0, 0, 8)\) and \((4, 6, 0)\):
\[
d = \sqrt{(4 - 0)^2 + (6 - 0)^2 + (0 - 8)^2} = \sqrt{16 + 36 + 64} = \sqrt{116} = 2\sqrt{29}
\]
- Therefore, the radius \( r \) is half of the diameter \( d \):
\[
r = \frac{d}{2} = \frac{2\sqrt{29}}{2} = \sqrt{29}
\]
3. **Formulate the standard equation](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd09d3726-e6d4-40fb-b56b-e32001dd8288%2F165d3d31-2303-425c-bb1e-73794d5f28d5%2Fvxcl8r3_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement:
**Objective:** Find the standard equation of the sphere with the given characteristics.
**Given Data:**
- Endpoints of a diameter of the sphere: \( (0, 0, 8) \) and \( (4, 6, 0) \)
### Solution:
To find the equation of the sphere, follow these steps:
1. **Determine the center of the sphere (C):**
- The center of the sphere is the midpoint of the diameter. To find the midpoint, use the midpoint formula for coordinates:
\[
\text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right)
\]
- Plugging in the given endpoints \((0, 0, 8)\) and \((4, 6, 0)\):
\[
C = \left( \frac{0 + 4}{2}, \frac{0 + 6}{2}, \frac{8 + 0}{2} \right) = (2, 3, 4)
\]
2. **Determine the radius (r) of the sphere:**
- The radius is half the length of the diameter. First, calculate the distance between the two endpoints using the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
\]
- For endpoints \((0, 0, 8)\) and \((4, 6, 0)\):
\[
d = \sqrt{(4 - 0)^2 + (6 - 0)^2 + (0 - 8)^2} = \sqrt{16 + 36 + 64} = \sqrt{116} = 2\sqrt{29}
\]
- Therefore, the radius \( r \) is half of the diameter \( d \):
\[
r = \frac{d}{2} = \frac{2\sqrt{29}}{2} = \sqrt{29}
\]
3. **Formulate the standard equation
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning