Check that each of the applications follows linear transformations.  a) Reflection Rr(x, y) with respect to a line r passing through the origin: let r be given Reflection Rr(x, y) with respect to a line r passing through the origin: let r be given by the vector equation (x, y) = t(a, b), then Rr : R² → R² is given by Rr(x, y) = (a2-b2/a2+b2  . x + 2ab/a2+b2 . y, 2ab/a2+b2  .x + b2 - a2/a2+b2 . y) where (a, b) is any vector in the direction of r and (x, y) ∈ R2

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Check that each of the applications follows linear transformations. 

a) Reflection Rr(x, y) with respect to a line r passing through the origin: let r be given Reflection Rr(x, y) with respect to a line r passing through the origin: let r be given
by the vector equation (x, y) = t(a, b), then Rr : R²R² is given by Rr(x, y) = (a2-b2/a2+b. x + 2ab/a2+b. y, 2ab/a2+b2  .x + b- a2/a2+b2 . y) where (a, b) is any vector in the direction of r and (x, y) ∈ R2.

b) Translation: T: R2 → R2 such that T(x, y) = (x + a, y + b), where a, b ∈ R e (x,y) ∈ R2.

(Images about the questions below)

(b) Translação: T : R? → R? tal que T(x, y) = (x + a, y + b), onde a, b e Re
(x, y) E R².
Transcribed Image Text:(b) Translação: T : R? → R? tal que T(x, y) = (x + a, y + b), onde a, b e Re (x, y) E R².
(a) Reflexão R,(x, y) em relação a uma reta r que passa pela origem: seja r dada
pela equação vetorial (x, y) = t(a, b), então R, : R? → R² é dada por R,(x, y) =
a² – b²
2ab
2ab
b? – a?
·y), onde (a, b) é qualquer vetor
a² + 62
a2 + 62
a2 + b?
a2 + b2
na direção de r e (x, y) € R².
Transcribed Image Text:(a) Reflexão R,(x, y) em relação a uma reta r que passa pela origem: seja r dada pela equação vetorial (x, y) = t(a, b), então R, : R? → R² é dada por R,(x, y) = a² – b² 2ab 2ab b? – a? ·y), onde (a, b) é qualquer vetor a² + 62 a2 + 62 a2 + b? a2 + b2 na direção de r e (x, y) € R².
Expert Solution
Step 1

Algebra homework question answer, step 1, image 1

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education