An Electron Evaporator. Electron beams are sometimes used to melt and evaporate metals in order to deposit thin metallic films on surfaces (similar to gold plating). One method is to put the material to be evaporated (called the "target") into a small tungsten cup (a crucible that has a very high melting point) and direct a beam of electrons at the target. Your team has been given the task of designing an electron-beam evaporator. The crucible is a cylinder, 2.0 cm in diameter and 1.5 cm in height, and contains a small target of pure nickel (Ni). The electrons are accelerated through a potential difference of V = 1.20 kV, and form a beam that originates below the crucible, exactly D = 3.70 cm off its center, in the +x direction (see the drawing). Field region Electron beam (a) What is the speed of the electrons in the beam? (b) You must steer the electron beam with a magnetic field so that it curls over the lip of the cup and strikes the nickel target. Assuming that a uniform field exists above the cup (the field is zero below), what must be the radius of the beam's circular path? (c) In what direction should the field point if the beam initially approaches the cup from the -y axis? (d) What must be the magnitude of the uniform magnetic field?
An Electron Evaporator. Electron beams are sometimes used to melt and evaporate metals in order to deposit thin metallic films on surfaces (similar to gold plating). One method is to put the material to be evaporated (called the "target") into a small tungsten cup (a crucible that has a very high melting point) and direct a beam of electrons at the target. Your team has been given the task of designing an electron-beam evaporator. The crucible is a cylinder, 2.0 cm in diameter and 1.5 cm in height, and contains a small target of pure nickel (Ni). The electrons are accelerated through a potential difference of V = 1.20 kV, and form a beam that originates below the crucible, exactly D = 3.70 cm off its center, in the +x direction (see the drawing). Field region Electron beam (a) What is the speed of the electrons in the beam? (b) You must steer the electron beam with a magnetic field so that it curls over the lip of the cup and strikes the nickel target. Assuming that a uniform field exists above the cup (the field is zero below), what must be the radius of the beam's circular path? (c) In what direction should the field point if the beam initially approaches the cup from the -y axis? (d) What must be the magnitude of the uniform magnetic field?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
PLEASE ANSWER EVERYTHING INCLULDING THE (D). MY QUESTIONS ARE BEING WASTED!!!!!!!!!!!!!!!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON