a) Using the country of the United states, collect data on the quarterly (not seasonally adjusted) consumer price index rate for 2001 – 2020. Data is presented in this table below Frequency: Quarterly   observation_date USACPIALLQINMEI 2001-01-01 74.1297037765224 2001-04-01 74.9032066616881 2001-07-01 75.0016524834365 2001-10-01 74.7906971511185 2002-01-01 75.0579072387213 2002-04-01 75.8736011903506 2002-07-01 76.1970660332381 2002-10-01 76.4361487431984 2003-01-01 77.2096516283642 2003-04-01 77.4909254047881 2003-07-01 77.8706450029604 2003-10-01 77.8847086917816 2004-01-01 78.5878931328414 2004-04-01 79.7129882385370 2004-07-01 79.9942620149610 2004-10-01 80.4724274348816 2005-01-01 80.9787202324446 2005-04-01 82.0616242716767 2005-07-01 83.0601461779816 2005-10-01 83.4820568426175 2006-01-01 83.9320948848957 2006-04-01 85.3525274558365 2006-07-01 85.8306928757571 2006-10-01 85.0993810570550 2007-01-01 85.9666887466581 2007-04-01 87.6149530765022 2007-07-01 87.8567078873386 2007-10-01 88.4815575816643 2008-01-01 89.4873926061562 2008-04-01 91.4519492975891 2008-07-01 92.5155860831361 2008-10-01 89.8987555041762 2009-01-01 89.4513895627740 2009-04-01 90.3998447368754 2009-07-01 91.0137247539206 2009-10-01 91.1968339823726 2010-01-01 91.5629118023883 2010-04-01 91.9979016976279 2010-07-01 92.0836901994372 2010-10-01 92.3552600305744 2011-01-01 93.5233900240630 2011-04-01 95.1537934691042 2011-07-01 95.5425138281220 2011-10-01 95.3972359225991 2012-01-01 96.1562532082790 2012-04-01 96.9519767217822 2012-07-01 97.1646196967587 2012-10-01 97.1996382819235 2013-01-01 97.7734367858283 2013-04-01 98.3023721223934 2013-07-01 98.6739347810494 2013-10-01 98.3985677539304 2014-01-01 99.1475998205473 2014-04-01 100.3184019149120 2014-07-01 100.4334428894690 2014-10-01 99.6266090617972 2015-01-01 99.0854383159576 2015-04-01 100.2800080444300 2015-07-01 100.5434209360510 2015-10-01 100.0911327035610 2016-01-01 100.1558256721390 2016-04-01 101.3300030518200 2016-07-01 101.6671096728650 2016-10-01 101.8933944259980 2017-01-01 102.6991031585640 2017-04-01 103.2572909678770 2017-07-01 103.6668255863500 2017-10-01 104.0510455649450 2018-01-01 104.9730610040630 2018-04-01 106.0575120490650 2018-07-01 106.4046038891720 2018-10-01 106.3434268428000 2019-01-01 106.6998007175290 2019-04-01 107.9786119420410 2019-07-01 108.2746525917270 2019-10-01 108.5052970883940 2020-01-01 108.9603980586480 2020-04-01 108.3719733183700 2020-07-01 109.5981863466900 2020-10-01 109.8502076503650 (i) Compute the CMAs for the four quarters of 2002 and 2003 manually (Show ALL workings). ( this should be by using the CPI and MA to compute the CMAs) (ii) Use EXCEL to complete the calculation of the CMAs and the seasonal indices for 2001 - 2020. Provide a table with the de-seasonalized input variables. Year Quarter CPI rate Seasonal Index Period De-Seasonalized CPI rate                         (iii)Using R-Studio, estimate a regression equation to determine the effect of time (period) on the De-Seasonalized CPI rate. Write down the forecast equation. (All codes and regression output should be provided).   Assist with all questions

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

a) Using the country of the United states, collect data on the quarterly (not seasonally
adjusted) consumer price index rate for 2001 – 2020. Data is presented in this table below

Frequency: Quarterly  
observation_date USACPIALLQINMEI
2001-01-01 74.1297037765224
2001-04-01 74.9032066616881
2001-07-01 75.0016524834365
2001-10-01 74.7906971511185
2002-01-01 75.0579072387213
2002-04-01 75.8736011903506
2002-07-01 76.1970660332381
2002-10-01 76.4361487431984
2003-01-01 77.2096516283642
2003-04-01 77.4909254047881
2003-07-01 77.8706450029604
2003-10-01 77.8847086917816
2004-01-01 78.5878931328414
2004-04-01 79.7129882385370
2004-07-01 79.9942620149610
2004-10-01 80.4724274348816
2005-01-01 80.9787202324446
2005-04-01 82.0616242716767
2005-07-01 83.0601461779816
2005-10-01 83.4820568426175
2006-01-01 83.9320948848957
2006-04-01 85.3525274558365
2006-07-01 85.8306928757571
2006-10-01 85.0993810570550
2007-01-01 85.9666887466581
2007-04-01 87.6149530765022
2007-07-01 87.8567078873386
2007-10-01 88.4815575816643
2008-01-01 89.4873926061562
2008-04-01 91.4519492975891
2008-07-01 92.5155860831361
2008-10-01 89.8987555041762
2009-01-01 89.4513895627740
2009-04-01 90.3998447368754
2009-07-01 91.0137247539206
2009-10-01 91.1968339823726
2010-01-01 91.5629118023883
2010-04-01 91.9979016976279
2010-07-01 92.0836901994372
2010-10-01 92.3552600305744
2011-01-01 93.5233900240630
2011-04-01 95.1537934691042
2011-07-01 95.5425138281220
2011-10-01 95.3972359225991
2012-01-01 96.1562532082790
2012-04-01 96.9519767217822
2012-07-01 97.1646196967587
2012-10-01 97.1996382819235
2013-01-01 97.7734367858283
2013-04-01 98.3023721223934
2013-07-01 98.6739347810494
2013-10-01 98.3985677539304
2014-01-01 99.1475998205473
2014-04-01 100.3184019149120
2014-07-01 100.4334428894690
2014-10-01 99.6266090617972
2015-01-01 99.0854383159576
2015-04-01 100.2800080444300
2015-07-01 100.5434209360510
2015-10-01 100.0911327035610
2016-01-01 100.1558256721390
2016-04-01 101.3300030518200
2016-07-01 101.6671096728650
2016-10-01 101.8933944259980
2017-01-01 102.6991031585640
2017-04-01 103.2572909678770
2017-07-01 103.6668255863500
2017-10-01 104.0510455649450
2018-01-01 104.9730610040630
2018-04-01 106.0575120490650
2018-07-01 106.4046038891720
2018-10-01 106.3434268428000
2019-01-01 106.6998007175290
2019-04-01 107.9786119420410
2019-07-01 108.2746525917270
2019-10-01 108.5052970883940
2020-01-01 108.9603980586480
2020-04-01 108.3719733183700
2020-07-01 109.5981863466900
2020-10-01 109.8502076503650


(i) Compute the CMAs for the four quarters of 2002 and 2003 manually (Show ALL
workings). ( this should be by using the CPI and MA to compute the CMAs)
(ii) Use EXCEL to complete the calculation of the CMAs and the seasonal indices for
2001 - 2020. Provide a table with the de-seasonalized input variables.

Year Quarter CPI rate Seasonal Index Period De-Seasonalized CPI rate
           
           

(iii)Using R-Studio, estimate a regression equation to determine the effect of time
(period) on the De-Seasonalized CPI rate. Write down the forecast equation. (All
codes and regression output should be provided).

 

Assist with all questions

Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman