a) Using the country of the United states, collect data on the quarterly (not seasonally adjusted) consumer price index rate for 2001 – 2020. Data is presented in this table below Frequency: Quarterly observation_date USACPIALLQINMEI 2001-01-01 74.1297037765224 2001-04-01 74.9032066616881 2001-07-01 75.0016524834365 2001-10-01 74.7906971511185 2002-01-01 75.0579072387213 2002-04-01 75.8736011903506 2002-07-01 76.1970660332381 2002-10-01 76.4361487431984 2003-01-01 77.2096516283642 2003-04-01 77.4909254047881 2003-07-01 77.8706450029604 2003-10-01 77.8847086917816 2004-01-01 78.5878931328414 2004-04-01 79.7129882385370 2004-07-01 79.9942620149610 2004-10-01 80.4724274348816 2005-01-01 80.9787202324446 2005-04-01 82.0616242716767 2005-07-01 83.0601461779816 2005-10-01 83.4820568426175 2006-01-01 83.9320948848957 2006-04-01 85.3525274558365 2006-07-01 85.8306928757571 2006-10-01 85.0993810570550 2007-01-01 85.9666887466581 2007-04-01 87.6149530765022 2007-07-01 87.8567078873386 2007-10-01 88.4815575816643 2008-01-01 89.4873926061562 2008-04-01 91.4519492975891 2008-07-01 92.5155860831361 2008-10-01 89.8987555041762 2009-01-01 89.4513895627740 2009-04-01 90.3998447368754 2009-07-01 91.0137247539206 2009-10-01 91.1968339823726 2010-01-01 91.5629118023883 2010-04-01 91.9979016976279 2010-07-01 92.0836901994372 2010-10-01 92.3552600305744 2011-01-01 93.5233900240630 2011-04-01 95.1537934691042 2011-07-01 95.5425138281220 2011-10-01 95.3972359225991 2012-01-01 96.1562532082790 2012-04-01 96.9519767217822 2012-07-01 97.1646196967587 2012-10-01 97.1996382819235 2013-01-01 97.7734367858283 2013-04-01 98.3023721223934 2013-07-01 98.6739347810494 2013-10-01 98.3985677539304 2014-01-01 99.1475998205473 2014-04-01 100.3184019149120 2014-07-01 100.4334428894690 2014-10-01 99.6266090617972 2015-01-01 99.0854383159576 2015-04-01 100.2800080444300 2015-07-01 100.5434209360510 2015-10-01 100.0911327035610 2016-01-01 100.1558256721390 2016-04-01 101.3300030518200 2016-07-01 101.6671096728650 2016-10-01 101.8933944259980 2017-01-01 102.6991031585640 2017-04-01 103.2572909678770 2017-07-01 103.6668255863500 2017-10-01 104.0510455649450 2018-01-01 104.9730610040630 2018-04-01 106.0575120490650 2018-07-01 106.4046038891720 2018-10-01 106.3434268428000 2019-01-01 106.6998007175290 2019-04-01 107.9786119420410 2019-07-01 108.2746525917270 2019-10-01 108.5052970883940 2020-01-01 108.9603980586480 2020-04-01 108.3719733183700 2020-07-01 109.5981863466900 2020-10-01 109.8502076503650 (i) Compute the CMAs for the four quarters of 2002 and 2003 manually (Show ALL workings). ( this should be by using the CPI and MA to compute the CMAs) (ii) Use EXCEL to complete the calculation of the CMAs and the seasonal indices for 2001 - 2020. Provide a table with the de-seasonalized input variables. Year Quarter CPI rate Seasonal Index Period De-Seasonalized CPI rate (iii)Using R-Studio, estimate a regression equation to determine the effect of time (period) on the De-Seasonalized CPI rate. Write down the forecast equation. (All codes and regression output should be provided). Assist with all questions
a) Using the country of the United states, collect data on the quarterly (not seasonally
adjusted) consumer price index rate for 2001 – 2020. Data is presented in this table below
Frequency: Quarterly | |
observation_date | USACPIALLQINMEI |
2001-01-01 | 74.1297037765224 |
2001-04-01 | 74.9032066616881 |
2001-07-01 | 75.0016524834365 |
2001-10-01 | 74.7906971511185 |
2002-01-01 | 75.0579072387213 |
2002-04-01 | 75.8736011903506 |
2002-07-01 | 76.1970660332381 |
2002-10-01 | 76.4361487431984 |
2003-01-01 | 77.2096516283642 |
2003-04-01 | 77.4909254047881 |
2003-07-01 | 77.8706450029604 |
2003-10-01 | 77.8847086917816 |
2004-01-01 | 78.5878931328414 |
2004-04-01 | 79.7129882385370 |
2004-07-01 | 79.9942620149610 |
2004-10-01 | 80.4724274348816 |
2005-01-01 | 80.9787202324446 |
2005-04-01 | 82.0616242716767 |
2005-07-01 | 83.0601461779816 |
2005-10-01 | 83.4820568426175 |
2006-01-01 | 83.9320948848957 |
2006-04-01 | 85.3525274558365 |
2006-07-01 | 85.8306928757571 |
2006-10-01 | 85.0993810570550 |
2007-01-01 | 85.9666887466581 |
2007-04-01 | 87.6149530765022 |
2007-07-01 | 87.8567078873386 |
2007-10-01 | 88.4815575816643 |
2008-01-01 | 89.4873926061562 |
2008-04-01 | 91.4519492975891 |
2008-07-01 | 92.5155860831361 |
2008-10-01 | 89.8987555041762 |
2009-01-01 | 89.4513895627740 |
2009-04-01 | 90.3998447368754 |
2009-07-01 | 91.0137247539206 |
2009-10-01 | 91.1968339823726 |
2010-01-01 | 91.5629118023883 |
2010-04-01 | 91.9979016976279 |
2010-07-01 | 92.0836901994372 |
2010-10-01 | 92.3552600305744 |
2011-01-01 | 93.5233900240630 |
2011-04-01 | 95.1537934691042 |
2011-07-01 | 95.5425138281220 |
2011-10-01 | 95.3972359225991 |
2012-01-01 | 96.1562532082790 |
2012-04-01 | 96.9519767217822 |
2012-07-01 | 97.1646196967587 |
2012-10-01 | 97.1996382819235 |
2013-01-01 | 97.7734367858283 |
2013-04-01 | 98.3023721223934 |
2013-07-01 | 98.6739347810494 |
2013-10-01 | 98.3985677539304 |
2014-01-01 | 99.1475998205473 |
2014-04-01 | 100.3184019149120 |
2014-07-01 | 100.4334428894690 |
2014-10-01 | 99.6266090617972 |
2015-01-01 | 99.0854383159576 |
2015-04-01 | 100.2800080444300 |
2015-07-01 | 100.5434209360510 |
2015-10-01 | 100.0911327035610 |
2016-01-01 | 100.1558256721390 |
2016-04-01 | 101.3300030518200 |
2016-07-01 | 101.6671096728650 |
2016-10-01 | 101.8933944259980 |
2017-01-01 | 102.6991031585640 |
2017-04-01 | 103.2572909678770 |
2017-07-01 | 103.6668255863500 |
2017-10-01 | 104.0510455649450 |
2018-01-01 | 104.9730610040630 |
2018-04-01 | 106.0575120490650 |
2018-07-01 | 106.4046038891720 |
2018-10-01 | 106.3434268428000 |
2019-01-01 | 106.6998007175290 |
2019-04-01 | 107.9786119420410 |
2019-07-01 | 108.2746525917270 |
2019-10-01 | 108.5052970883940 |
2020-01-01 | 108.9603980586480 |
2020-04-01 | 108.3719733183700 |
2020-07-01 | 109.5981863466900 |
2020-10-01 | 109.8502076503650 |
(i) Compute the CMAs for the four quarters of 2002 and 2003 manually (Show ALL
workings). ( this should be by using the CPI and MA to compute the CMAs)
(ii) Use EXCEL to complete the calculation of the CMAs and the seasonal indices for
2001 - 2020. Provide a table with the de-seasonalized input variables.
Year | Quarter | CPI rate | Seasonal Index | Period | De-Seasonalized CPI rate |
(iii)Using R-Studio, estimate a regression equation to determine the effect of time
(period) on the De-Seasonalized CPI rate. Write down the forecast equation. (All
codes and regression output should be provided).
Assist with all questions
Step by step
Solved in 4 steps with 1 images