A physics major is working to pay her college tuition by performing in a traveling carnival. She rides a motorcycle inside a hollow, transparent plastic sphere. After gaining sufficient speed, she travels in a vertical circle with radius 13.0 m. She has mass 70.0 kg, and her motorcycle has mass 40.0 kg. (a) What minimum speed must she have at the top of the circle for the motorcycle tires to remain in contact with the sphere? (b) At the bottom of the circle, her speed is twice the value calculated in part (a). What is the magnitude of the normal force exerted on the motorcycle by the sphere at this point?
A physics major is working to pay her college tuition by performing in a traveling carnival. She rides a motorcycle inside a hollow, transparent plastic sphere. After gaining sufficient speed, she travels in a vertical circle with radius 13.0 m. She has mass 70.0 kg, and her motorcycle has mass 40.0 kg. (a) What minimum speed must she have at the top of the circle for the motorcycle tires to remain in contact with the sphere? (b) At the bottom of the circle, her speed is twice the value calculated in part (a). What is the magnitude of the normal force exerted on the motorcycle by the sphere at this point?
Related questions
Question
A physics major is working to pay her college tuition by
performing in a traveling carnival. She rides a motorcycle inside a
hollow, transparent plastic sphere. After gaining sufficient speed,
she travels in a vertical circle with radius 13.0 m. She has mass
70.0 kg, and her motorcycle has mass 40.0 kg. (a) What minimum
speed must she have at the top of the circle for the motorcycle tires
to remain in contact with the sphere? (b) At the bottom of the circle,
her speed is twice the value calculated in part (a). What is the magnitude
of the normal force exerted on the motorcycle by the sphere
at this point?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images