Find the values of 0 for 27. cos 0 = −1

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

27

Sure, here’s a transcription suitable for an educational website:

---

### Trigonometric Functions and Graphical Representation

#### Find each value by referring to the graph of the sine or the cosine function.

19. \(\cos 8\pi\)

20. \(\sin 11\pi\)

21. \(\cos \frac{\pi}{2}\)

22. \(\sin \left(-\frac{3\pi}{2}\right)\)

23. \(\sin \frac{7\pi}{2}\)

24. \(\cos (-3\pi)\)

25. What is the value of \(\sin \pi + \cos \pi\)?

26. Find the value of \(\sin 2\pi - \cos 2\pi\).

#### Find the values of \(\theta\) for which each equation is true.

27. \(\cos \theta = -1\)

28. \(\sin \theta = 1\)

29. \(\cos \theta = 0\)

30. Under what conditions does \(\cos \theta = 1\)?

#### Graph each function for the given interval.

31. \(y = \sin x, \quad -5\pi \leq x \leq -3\pi\)

32. \(y = \cos x, \quad 8\pi \leq x \leq 10\pi\)

33. \(y = \cos x, \quad -5\pi \leq x \leq -3\pi\)

34. \(y = \sin x, \quad \frac{9\pi}{2} \leq x \leq \frac{13\pi}{2}\)

35. \(y = \cos x, \quad \frac{7\pi}{2} \leq x \leq \frac{3\pi}{2}\)

36. \(y = \sin x, \quad \frac{7\pi}{2} \leq x \leq \frac{11\pi}{2}\)

#### Determine whether each graph is \(y = \sin x\), \(y = \cos x\), or neither. Explain.

- **Graph 37:** Shows a sine wave-like pattern. Check the amplitude and period to determine if it matches \(\sin x\).

- **Graph 38:** Displays several wave
Transcribed Image Text:Sure, here’s a transcription suitable for an educational website: --- ### Trigonometric Functions and Graphical Representation #### Find each value by referring to the graph of the sine or the cosine function. 19. \(\cos 8\pi\) 20. \(\sin 11\pi\) 21. \(\cos \frac{\pi}{2}\) 22. \(\sin \left(-\frac{3\pi}{2}\right)\) 23. \(\sin \frac{7\pi}{2}\) 24. \(\cos (-3\pi)\) 25. What is the value of \(\sin \pi + \cos \pi\)? 26. Find the value of \(\sin 2\pi - \cos 2\pi\). #### Find the values of \(\theta\) for which each equation is true. 27. \(\cos \theta = -1\) 28. \(\sin \theta = 1\) 29. \(\cos \theta = 0\) 30. Under what conditions does \(\cos \theta = 1\)? #### Graph each function for the given interval. 31. \(y = \sin x, \quad -5\pi \leq x \leq -3\pi\) 32. \(y = \cos x, \quad 8\pi \leq x \leq 10\pi\) 33. \(y = \cos x, \quad -5\pi \leq x \leq -3\pi\) 34. \(y = \sin x, \quad \frac{9\pi}{2} \leq x \leq \frac{13\pi}{2}\) 35. \(y = \cos x, \quad \frac{7\pi}{2} \leq x \leq \frac{3\pi}{2}\) 36. \(y = \sin x, \quad \frac{7\pi}{2} \leq x \leq \frac{11\pi}{2}\) #### Determine whether each graph is \(y = \sin x\), \(y = \cos x\), or neither. Explain. - **Graph 37:** Shows a sine wave-like pattern. Check the amplitude and period to determine if it matches \(\sin x\). - **Graph 38:** Displays several wave
Expert Solution
Step 1

Given:- cosθ = -1

Solving for θ i.e.,

 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education