serve_file (18)
pdf
keyboard_arrow_up
School
Rumson Fair Haven Reg H *
*We aren’t endorsed by this school
Course
C101
Subject
Mathematics
Date
Nov 24, 2024
Type
Pages
15
Uploaded by CoachRiverTiger30
MA26600 Final Exam
GREEN VERSION 01
NAME:
PUID (10 digits):
INSTRUCTOR:
SECTION/TIME:
•
You must use a
#2 pencil
on the mark-sense answer sheet.
•
Fill in the
ten digit PUID
(starting with two zeroes) and your
Name
and blacken in
the appropriate spaces.
•
Fill in the correct
Test/Quiz number
(GREEN is
01
, ORANGE is
02
)
•
Fill in the
four digit section number
of your class and blacken the numbers below
them. Here they are:
0010
TR
10:30A
G Poghotanyan
0011
TR
12:00P
G Poghotanyan
0022
TR
3:00P
Zhaopeng Hao
0023
TR
1:30P
Zhaopeng Hao
0034
TR
1:30P
Ying Liang
0035
MWF
9:30A
Heejin Lee
0046
MWF
1:30P
Ping Xu
0047
TR
3:00P
Ying Liang
0061
MWF
3:30P
Christian Noack
0062
TR
12:00P
Guang Yang
0071
TR
9:00A
Guang Yang
0072
MWF
10:30A
E Birgit Kaufmann
0083
MWF
11:30A
E Birgit Kaufmann
0084
MWF
8:30A
Krishnendu Khan
0095
MWF
7:30A
Krishnendu Khan
0096
MWF
10:30A
Ping Xu
0107
MWF
1:30P
Yilong Zhang
0108
MWF
8:30A
Heejin Lee
0109
MWF
2:30P
Christian Noack
0110
MWF
2:30P
Michelle Michelle
0111
MWF
3:30P
Michelle Michelle
0112
MWF
9:30A
Ping Xu
0113
MWF
11:30A
Yilong Zhang
•
Sign the mark-sense sheet.
•
Fill in your name and your instructor’s name and the time of your class meeting on the
exam booklet above.
•
There are 20 multiple-choice questions, each worth 10 points.
Blacken in
your choice
of the correct answer in the spaces provided for questions 1–20 in the answer sheet. Do
all your work on the question sheets, in addition, also
Circle
your answer choice for each
problem on the question sheets in case your mark-sense sheet is lost.
•
Show your work on the question sheets.
Although no partial credit will be given, any
disputes about grades or grading will be settled by examining your written work on the
question sheets.
•
No calculators, books, electronic devices, or papers are allowed.
Use the back of
the test pages for scratch paper.
•
Pull off the
table of Laplace transforms
on the last page of the exam for reference. Do
not turn it in with your exam booklet at the end.
1
1.
What is the largest open interval in which a solution
y
(
x
) to the initial value problem
(
x
+ 2)(
x
−
1)
y
′
+ (
x
−
3)
y
=
2
x
−
5
,
y
(0) = 3
is guaranteed to exist?
A. (
−
2
,
3)
B. (5
,
∞
)
C. (
−
2
,
1)
D. (
−
2
,
5)
E. (
−∞
,
−
2)
2.
Solve the differential equation
dy
dx
=
4
x
3
+ 6
x
2
y
2
,
y
(1) = 3
.
A.
y
=
3
√
18
x
4
+ 3
x
3
+ 6
B.
y
=
3
√
3
x
4
+ 6
x
3
+ 18
C.
y
=
3
√
x
4
+ 8
x
3
+ 18
D.
y
=
3
√
3
x
4
+ 18
x
3
+ 6
E.
y
=
3
√
3
x
4
+ 9
x
3
+ 15
2
3.
Find the unique solution
y
(
x
) to the following initial value problem
2
xy
′
+
y
= 4
√
x,
y
(4) = 2
.
A.
x
3
/
2
−
3
√
x
B.
√
x
−
2
√
x
+ 2
C. 2
x
3
/
2
−
7
√
x
D. 2
√
x
−
4
√
x
E.
√
x
+
2
√
x
−
1
4.
A tank initially contains 400 gallons of pure water.
Brine containing 2 lb of salt per
gallon enters the tank at a rate of 4 gal/min, and the well-stirred mixture leaves the tank
at the same rate. How many minutes will it take for the amount of salt in the tank to
reach 400 lb?
A. 100 ln 2
B.
−
400 ln 3
C. 200 ln 5
D. 100
−
100
e
−
2
E. 200
−
e
−
2
3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
5.
Which statements below are
TRUE
for this autonomous equation
dy
dx
= 3
y
(
y
−
4)
2
(
y
+ 4)
3
?
(I)
y
=
−
4 is an asymptotically stable equilibrium solution.
(II)
y
= 0 is an asymptotically stable equilibrium solution.
(III) There are precisely three equilibrium solutions.
A. All three are TRUE
B. Only (II) and (III)
C. Only (I) and (III)
D. Only (I) and (II)
E. Only (II)
6.
Solve the initial value problem:
y
′′
+ 4
y
′
+ 3
y
= 0
,
y
(0) = 2
,
y
′
(0) =
−
4
.
A.
e
−
x
+
1
2
e
−
3
x
B.
e
−
x
+
e
−
3
x
C.
e
x
−
e
−
3
x
D.
e
x
−
1
2
e
−
3
x
E.
e
−
x
−
e
−
3
x
4
7.
Find
all
values of
k
for which the general solution to
y
′′
+ 2(1
−
k
)
y
′
+
k
2
y
= 0
has the form
y
=
C
1
e
ax
cos
bx
+
C
2
e
ax
sin
bx
, where
b
̸
= 0. (Note:
a
is allowed to be 0.)
A.
k >
1
B.
k
=
b
C. 0
< k <
1
D.
k <
1
4
E.
k >
1
2
8.
Find the trial solution for a particular solution
y
p
of the following differential equation
using the method of undetermined coefficients.
y
(4)
−
2
y
′′′
+ 10
y
′′
=
t
2
+
e
t
cos 2
t.
A.
At
3
+
Bt
2
+
Ct
+
De
t
cos 2
t
+
Ee
t
sin 2
t
B.
At
4
+
Bt
3
+
Ct
2
+
Dt
+
E
+
Fe
t
cos 2
t
+
Ge
t
sin 2
t
C.
At
4
+
Bt
3
+
Ct
2
+
Dt
2
e
t
cos 2
t
+
Et
2
e
t
sin 2
t
D.
At
4
+
Bt
3
+
Ct
2
+
De
t
cos 2
t
+
Ee
t
sin 2
t
E.
At
2
+
Bt
+
C
+
De
t
cos 2
t
+
Ee
t
sin 2
t
5
9.
An object with mass
m
is attached to a spring with spring constant
k
= 1 lb/ft. If there
is no damping and the external force acting on a mass is
F
(
t
) = 5 cos 3
t
pounds, find the
value of
m
for which resonance occurs.
A.
m
= 1
/
9
B.
m
= 20
C.
m
= 9
D.
m
= 1
/
20
E.
m
= 3
10.
Which of the following differential equations has
y
(
t
) =
c
1
e
−
t
+
c
2
te
−
t
+
c
3
cos
t
+
c
4
sin
t
as a general solution?
A.
y
(4)
−
2
y
′′′
+ 2
y
′
−
y
= 0
B.
y
(4)
+ 2
y
′′′
−
2
y
′
−
y
= 0
C.
y
(4)
−
2
y
′′′
−
2
y
′
+
y
= 0
D.
y
(4)
−
2
y
′′
+
y
= 0
E.
y
(4)
+ 2
y
′′′
+ 2
y
′′
+ 2
y
′
+
y
= 0
6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
11.
Given that
y
c
(
x
) =
c
1
x
+
c
2
x
−
1
is a complementary solution of the nonhomogeneous
second order differential equation
x
2
y
′′
+
xy
′
−
y
= 600
x
5
,
use the method of variation of parameters to find its particular solution
y
p
(
x
).
A.
y
p
(
x
) = 3
x
7
ln
x
B.
y
p
(
x
) = 125
x
5
C.
y
p
(
x
) = 25
x
6
ln
x
D.
y
p
(
x
) = 25
x
5
E.
y
p
(
x
) =
45
2
x
7
12.
Transform the following system into an equivalent system of first-order differential equa-
tions by letting
x
1
=
x, x
2
=
x
′
and
y
1
=
y, y
2
=
y
′
:
x
′′
+ 3
x
′
+ 4
x
−
2
y
= 0
,
y
′′
+ 2
y
′
−
3
x
+
y
=
e
2
πt
.
A.
x
′
1
=
x
2
,
x
′
2
=
−
4
x
1
−
2
y
1
−
3
x
2
,
y
′
1
=
y
2
,
y
′
2
= 3
x
1
−
y
1
−
2
y
2
+
e
2
πt
B.
x
′
1
=
x
2
,
x
′
2
=
−
4
x
1
+ 2
y
1
+ 3
x
2
,
y
′
1
=
y
2
,
y
′
2
= 3
x
1
−
y
1
+ 2
y
2
+
e
2
πt
C.
x
′
1
=
x
2
,
x
′
2
=
−
4
x
1
+ 2
y
1
−
3
x
2
,
y
′
1
=
y
2
,
y
′
2
= 3
x
1
−
y
1
−
2
y
2
+
e
2
πt
D.
x
′
1
=
x
2
,
x
′
2
=
−
4
x
1
+ 2
y
1
−
3
x
2
,
y
′
1
=
y
2
,
y
′
2
= 3
x
1
+
y
1
−
2
y
2
+
e
2
πt
E.
x
′
1
=
x
2
,
x
′
2
=
−
4
x
1
−
2
y
1
−
3
x
2
,
y
′
1
=
y
2
,
y
′
2
= 3
x
1
+
y
1
−
2
y
2
+
e
2
πt
7
13.
Consider the following systems
x
′
=
1
−
2
2
1
x
(I)
x
′
=
−
1
2
−
2
−
1
x
(II)
Which of the following statements is true about their phase plots?
A. Both (I) and (II) are saddle points
B. (I) spiral source and (II) spiral sink
C. (I) spiral sink and (II) saddle point
D. (I) spiral source and (II) saddle point
E. (I) spiral sink and (II) spiral source
8
14.
Let
x
(
t
) and
y
(
t
) be the particular solutions of the following initial value problem:
x
′
= 5
x
+
y,
x
(0) = 1
,
y
′
= 3
x
+ 7
y,
y
(0) =
−
5
.
Find
x
(2) +
y
(2).
A.
−
4
e
16
B. 6
e
8
C. 6
e
16
D. 4
e
8
E. 6
e
8
+ 7
e
16
9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
15.
Find the general solution of
x
′
=
1
−
4
4
9
x
.
A.
x
(
t
) =
c
1
−
4
4
e
5
t
+
c
2
−
1
1
e
5
t
B.
x
(
t
) =
c
1
4
0
e
5
t
+
c
2
0
4
t
e
−
5
t
C.
x
(
t
) =
c
1
−
4
4
e
5
t
+
c
2
1
−
4
t
4
t
e
5
t
D.
x
(
t
) =
c
1
(1 +
t
)
−
4
4
e
5
t
E.
x
(
t
) =
c
1
−
4
4
e
5
t
+
c
2
−
4
t
+ 4
e
−
5
t
10
16.
Find the Laplace transform of the solution to the initial value problem
x
′′
−
x
= 5 sin 2
t,
x
(0) = 1
, x
′
(0) = 1
.
A.
1
s
−
1
+
1
(
s
−
1)
2
+
5
s
2
+ 4
B.
1
(
s
−
1)
2
+
5
2(
s
2
+ 4)
C.
1
s
+ 1
−
1
s
−
1
+
2
s
2
+ 4
D.
2
s
+ 1
+
1
s
−
1
−
1
s
2
+ 2
E.
−
1
s
+ 1
+
2
s
−
1
−
2
s
2
+ 4
11
17.
Find the solution
y
of the initial value problem
4
y
′′
+ 4
y
= 1 +
δ
(
t
−
π
)
,
y
(0) = 0
, y
′
(0) = 0
.
A.
1
4
−
1
4
cos
t
−
1
4
u
(
t
−
π
) sin
t
B.
−
1
4
cos
t
−
1
4
u
(
t
−
π
) sin
t
C.
1
4
−
1
4
sin
t
−
1
4
u
(
t
−
π
) cos
t
D.
1
4
−
1
4
cos
t
+
1
4
u
(
t
−
π
) cos
t
E.
1
4
−
1
4
u
(
t
−
π
) sin
t
12
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
18.
The Laplace transform of
f
(
t
) =
Z
t
0
(
t
−
τ
)
e
t
−
τ
cos(2
τ
)
dτ
is
A.
F
(
s
) =
2
(
s
2
+ 1)(
s
+ 4)
2
B.
F
(
s
) =
s
(
s
−
4)
2
(
s
−
1)
C.
F
(
s
) =
1
(
s
−
1)(
s
2
+ 4)
D.
F
(
s
) =
s
(
s
−
1)
2
(
s
2
+ 4)
E.
F
(
s
) =
s
(
s
2
+ 1)(
s
2
+ 4)
19.
Find the Laplace transform of
f
(
t
) =
(
0
,
t <
1
,
t
2
e
2
t
,
t
≥
1
.
A.
e
−
s
−
2
2
(
s
−
2)
3
−
2
(
s
−
2)
2
+
1
s
−
2
B.
e
−
s
+2
2
(
s
−
2)
3
+
2
(
s
−
2)
2
+
1
s
−
2
C.
e
−
s
+2
2
(
s
−
1)
3
+
4
(
s
−
1)
2
+
4
s
−
1
D.
2
e
−
s
(
s
−
2)
3
E.
e
−
2
s
+1
2
(
s
−
1)
3
+
2
(
s
−
1)
2
+
1
s
−
1
13
20.
Find the inverse Laplace transform
L
−
1
{
F
(
s
)
}
of the function
F
(
s
) =
13
s
(
s
2
+ 4
s
+ 13)
.
A. 2 + cos 3
t
+
1
2
sin 3
t
B. 3 +
e
−
2
t
cos 3
t
−
e
−
2
t
sin 3
t
C. 1
−
2
3
e
−
2
t
sin 3
t
D.
e
−
2
t
cos 3
t
+
e
−
2
t
sin 3
t
E. 1
−
e
−
2
t
cos 3
t
−
2
3
e
−
2
t
sin 3
t
14
Table of Laplace Transforms
f
(
t
) =
L
−
1
{
F
(
s
)
}
F
(
s
) =
L{
f
(
t
)
}
1
.
1
1
s
,
s >
0
2
.
e
at
1
s
−
a
,
s > a
3
.
t
n
,
n
= positive integer
n
!
s
n
+1
,
s >
0
4
.
t
p
,
p >
−
1
Γ(
p
+ 1)
s
p
+1
,
s >
0
5
.
sin
at
a
s
2
+
a
2
,
s >
0
6
.
cos
at
s
s
2
+
a
2
,
s >
0
7
.
sinh
at
a
s
2
−
a
2
,
s >
|
a
|
8
.
cosh
at
s
s
2
−
a
2
,
s >
|
a
|
9
.
e
at
sin
bt
b
(
s
−
a
)
2
+
b
2
,
s > a
10
.
e
at
cos
bt
s
−
a
(
s
−
a
)
2
+
b
2
,
s > a
11
.
t
n
e
at
,
n
= positive integer
n
!
(
s
−
a
)
n
+1
,
s > a
12
.
u
(
t
−
c
)
e
−
cs
s
,
s >
0
13
.
u
(
t
−
c
)
f
(
t
−
c
)
e
−
cs
F
(
s
)
14
.
e
ct
f
(
t
)
F
(
s
−
c
)
15
.
f
(
c t
)
1
c
F
s
c
,
c >
0
16
.
Z
t
0
f
(
t
−
τ
)
g
(
τ
)
dτ
F
(
s
)
G
(
s
)
17
.
δ
(
t
−
c
)
e
−
cs
18
.
f
(
n
)
(
t
)
s
n
F
(
s
)
−
s
n
−
1
f
(0)
− · · · −
sf
(
n
−
2)
(0)
−
f
(
n
−
1)
(0)
19
.
t
n
f
(
t
)
(
−
1)
n
F
(
n
)
(
s
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help