P Conol - 4.4 Study Guide, Checkup, & Quiz

docx

School

Waiakea High School *

*We aren’t endorsed by this school

Course

MCA1040

Subject

Mathematics

Date

Nov 24, 2024

Type

docx

Pages

6

Uploaded by DukeDiscoveryCoyote7

Report
Peyton Conol | 11.3.23 - 4.4 Study Guide, Checkup, & Quiz Page 1: a. A logarithm is just a(n) exponent . b. y = lo g b x is the same as b y = x . c. lo g 8 64 = ? is the same question as, "To what exponent do we need to raise 8 to get 64 ." Page 2: Solve for the variable in each of the following equations. a. y = lo g 9 81 | 2 = lo g 9 81 b. 3 = lo g 5 x | 3 = lo g 5 15 c. 5 = lo g b 32 | 5 = lo g 2 32 d. y = lo g 3 243 | 5 = lo g 3 243 e. 2 = lo g 4 ( x ) | 2 = lo g 4 ( 1 16 ) f. 3 = lo g b ( 1 216 ) | 3 = lo g 6 ( 1 216 ) Page 3: a. A common logarithm is any logarithm with a base of 10 , while a natural logarithm is any logarithm with a base of e . b. If the base of a logarithm is not written, it is assumed to be 10 . c. The natural logarithm of x is written as ln = x . d. You should use the log button on a calculator to find the common logarithm of any number greater than 0 and the ln button to find the natural log. e. What is the change in the base formula? lo g b x = lo g a x lo g a b f. The expression lo g 4 256 can be written as a fraction with log 256 as the numerator and log 4 as the denominator. Page 4: Calculate each of the following logarithms to 2 decimal places. a. lo g 7 102 = ¿ log102 log7 = 2.38 b. lo g 3 44 = ¿ log 44 log 3 = 3.44 c. lo g 6 13 = ¿ log13 log6 = 1.43 d. lo g 2 275 = ¿ log275 log 2 = 8.1
Page 5: Circle your answers where appropriate: a. lo g b MN = ¿ lo g b M + lo g b N b. lo g b M N = ¿ lo g b M lo g b N c. lo g b M p = ¿ plo g b M d. log ( x + y ) logx + logy e. logx logy log x y Page 6: Match the following expressions with an equivalent expression numbered i through vi. a. log ( 36 5 ) | log 18 + 1 3 log 8 log 5 b. ln ( x 2 49 y 4 ) | ln ( x 7 )+ ln ( x + 7 )− 4ln ( y ) c. x + 49 ¿ 2 ( ¿ ) 18 x 6 ¿ ln ¿ | ln ( 18 )+ 6 ln ( x )− 2ln ( x + 49 ) d. 2 lo g 3 ( x )+ lo g 3 ( y )+ lo g 3 ( z )− lo g 3 ( x + z ) | lo g 3 x 2 yz x + z e. 6 lo g 3 ( x )+ 2 lo g 3 ( x + z ) | x + z ¿ 2 lo g 3 x 6 ¿ f. log ( x )+ 2log ( y )+ log ( z )− log ( x + 7 ) | log ( x y 2 z x + 7 )
Answer the following questions using what you've learned from this lesson. Write your responses in the space provided. 1. Write the equation y = b x in logarithmic form. lo g b y = x 2. Write the equation y = e x in logarithmic form. ln ( y )= x 3. Write the equation y = log x in exponential form. 10 y = x 4. Write the equation y = ln x in exponential form. e y = x 5. Show two ways of finding y if y = log 4 64. Explain your thinking. 4 ? = 64 y = 3 3 = lo g 4 64 4 y = 64 4 y = 4 3 y = 3 6. Find y if y = log 32 1. Explain your thinking. 32 y = 1 32 y = 32 0 y = 0 7. Use the rules of logarithms to expand 3 x + ¿ ¿ ¿ log ¿ . 3 x + ¿ ¿ x 5 ¿ 7 log ¿
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
4 lo g 10 ( x + 3 )+ 7 lo g 10 ( x 5 ) 8. Use the rules of logarithms to expand ln a 3 b 5 c 8 . ln ( a 3 b 5 )− ln ( c 8 ) d ln ( a 3 )− ln ( b 5 )− 8ln ( c ) 3ln ( a )+ 5 ln ( b )− 8 ln ( c ) 9. Write the expression 3log ( x 2 )+ log ( x + 2 )− log ( x 2 4 ) as a single logarithm. 2 lo g 10 ( x 2 ) 10. Write the expression 5ln M + 3ln N - 2ln P - ln R as a single logarithm. ln ( M 5 N 3 P 2 R ) 11. Solve for x if 5 = log 3 ( x 2 + 18). x 2 + 18 = 3 5 x 2 + 18 = 243 x 2 = 225 x = ± 15 12. Solve for x if -2 = log(3 x + 5). 3 x + 5 = 10 2 3 x + 5 = 1 10 2 3 x = 1 100 5 x = 499 300 13. Use the change-of-base formula and a calculator to evaluate log 5 65 to two decimal places. lo g 5 65 = log65 log5 = 2.59 14. Use the change-of-base formula and a calculator to evaluate log 8 125 to two decimal places. lo g 8 125 = log125 log 8 = 2.32 15. How much more intense is an earthquake that measures 7.5 on the Richter scale than one that measures 6.2? (Recall that the Richter scale defines magnitude of an earthquake with the
equation m = log L S , where I is the intensity of the earthquake being measured, and S is the intensity of a standard earthquake.) M = log L S 10 M = I S I = 10 ( 7.5 6.2 ) I = 19.95 16. The psychological sensation of loudness, B , is measured in decibels and is defined with reference to the intensity, I 0 , of a barely audible sound by the following equation. In this equation, I is the intensity of the sound in question. B = 10log I I 0 If the sound of a jet engine during takeoff is 140 decibels and the sound of a rock concert is 115 decibels, how does the intensity of the sound of the jet engine compare to the intensity of the rock concert? B = 10log 140 115 The jet engine is significantly intense compared to the rock concert. 17. True or false: ln ( x + y )− ln ( x + y )= 0 . Explain your thinking. True, the equation cancels each other. 18. True or false: log ( x + y )− log ( y )= log ( x ) . Explain your thinking. False, log ( x + y ) logx + logy 19. True or false: logx ¿ 2 = 2 logx ¿ . Explain your thinking. True, lo g b M p = ¿ plo g b M 20. True or false: ln56 ln7 = ln 8 . Explain your thinking. False, logx logy log x y
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help