FIN4610 Group 9 (1)
docx
keyboard_arrow_up
School
Baruch College, CUNY *
*We aren’t endorsed by this school
Course
3100
Subject
Finance
Date
Nov 24, 2024
Type
docx
Pages
1
Uploaded by aki77
A risky stock is currently trading at $100 and its market value a year later will be
either $200 (if certain projects go well for the corporation) or $50 (if things turn out
bad for those important projects). There is a one-year zero-coupon bond available
with a par value $100 that currently trades for $90. Can you create a portfolio of the
stock and the bond that will replicate the payoff of a call option on the stock with
strike $100 and expiry in 1 year? Then, can you price the call? Explain carefully how
will you do all this.
Discover more documents: Sign up today!
Unlock a world of knowledge! Explore tailored content for a richer learning experience. Here's what you'll get:
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
Stock Y is currently selling for $35. You believe that, one year from now, Stock Y will sell for either $65 (up-state) or $25 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 2.5%. You have a European call option with a 1-year expiration date and an exercise price of $40. If you where to create a strategy that replicates this option, how many shares would you need to buy (shortsell if negative)? In other words, what is the call option delta?
arrow_forward
You have two options to invest $1000 in:
A $1050 face value bond with coupon rate c =
i)
ii)
= 6%.
A stock portfolio that you aim to resell at $1100 after receiving a dividend of $50.
Then answer the following:
a) Which of the two options makes you the highest rate of return?
b) Is there any reason why would you want to choose the other?
arrow_forward
The current price of a stock is $20. In 1 year, the price will be either $28 or $15. The annual risk-free rate is 7%. The data has been collected in the Microsoft Excel Online file below. Open the spreadsheet and perform the required analysis to answer the question below.
Find the price of a call option on the stock that has a strike price is of $25 and that expires in 1 year. (Hint: Use daily compounding.) Assume 365-day year. Do not round intermediate calculations. Round your answer to the nearest cent.
arrow_forward
You now face the choice of investing it in a U.S. Treasury bond that will return $633,000 at the end of a year or a common stock that has a 50-50 chance of being worthless or worth $1,380,000 at the end of the year.
The expected rate of return on the T-bond investment is 5.5%. What is the expected rate of return on the stock investment? Round your answer to the nearest whole number.
arrow_forward
Assume that the current stock price is $50 per share, that call options can be purchased with an exercise price of $60 per share, that bank loans can be obtained for a 10 percent nominal rate, and that at expiration of the option in three months, the stock will either be valued at $30 or $70. Show that it is possible to replicate the stock payoff by borrowing and buying a call option.
arrow_forward
The price of Bobco stock is currently $60. In one year, the price will either be s66 or $54. If the one-year risk free rate of interest is 6%, what is the price of a Bobco call option with an exercise price of $61? Recall, you will want to set 66N - 1.06B = 5 as
one of the equations you need to solve this problem. You will need to figure out the other equation, then use both equations to solve for N and B. Then, you will price the portfolio of N shares less the amount borrowed. Round your answer to nearest cent.
$6
$60
$54
arrow_forward
Suppose the current stock price is $50 and you believe that, one year from now, the stock will sell for either $60 (up-state) or $30 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 4%. You have a European put option with a 1-year expiration date and an exercise price of $40. The call option price with the same exercise price with the same maturity date is $14.10. What would be the put option price? (SHOW YOUR WORK)
arrow_forward
A stock is selling today for $110. The stock has an annual volatility of 64 percent and the annual
risk-free rate is 7 percent.
c.
Calculate the fair price for a 1 year European put option with an exercise price of $95.
d. Calculate how much the current stock price would need to change for the purchaser of
the put option to break even in one year.
e. Calculate the level of volatility that would make a $95 call option sell for $30. (Use Goal
Seek or Solver).
f.
Calculate the level of volatility that would make a $95 put option sell for $8. (Use Goal
Seek or Solver).
Please show work using excel
arrow_forward
A stock has a current price of $67. An option on this stock that expires in six months has an exercise price of $65. The
stock will pay a dividend of $5 in three months. Assume an annualized volatility of 30% and a continuously compounded
risk - free rate of 5% per annum. Use the Black - Sholes - Merton model to price this option. 1) Suppose the option is a
European put. Calculate the value of the put. 2) Suppose this option is an American call. Use Black's approximation to
calculate the value of this call.
arrow_forward
I need help on this pls and as soon as possible:
C. A coupon bond has a face value of $ 1,000, remaining maturity of 10 years, a 5% annuallypaid coupon, and a market interest rate of 4%.
(1) What is the current price for the above bond? (2) Even though the bonds of a corporation are less risky than equity, investors still haverisks. Please discuss potential risks that investors face.
arrow_forward
Stock Z is currently selling for $120. You believe that, one year from now, Stock Z will sell for either $155 (up-state) or $85 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 4%. You have a European put option with a 1-year expiration date and an exercise price of $115. What is this option's delta (Δ) ?
arrow_forward
XYZ Corp. will pay a $2 per share dividend in two months. Its stock price currently is $60 per share. A call option on XYZ has an exercise price of $55 and 3-month time to expiration. The risk-free interest rate is .5% per month, and the stock’s volatility (standard deviation) = 7% per month. Find the Black-Scholes value of the option. (Hint: Try defining one “period” as a month, rather than as a year, and think about the net-of-dividend value of each share.)
arrow_forward
Maria VanHusen, CFA, suggests that using forward contracts on fixed-income securities can be used to protect the value of the Star Hospital Pension Plan’s bond portfolio against the possibility of rising interest rates. VanHusen prepares the following example to illustrate how such protec-tion would work:∙ A 10-year bond with a face value of $1,000 is issued today at par value. The bond pays an annual coupon.∙ An investor intends to buy this bond today and sell it in 6 months.∙ The 6-month risk-free interest rate today is 5% (annualized).∙ A 6-month forward contract on this bond is available, with a forward price of $1,024.70.∙ In 6 months, the price of the bond, including accrued interest, is forecast to fall to $978.40 as a result of a rise in interest rates.a. Should the investor buy or sell the forward contract to protect the value of the bond against rising interest rates during the holding period?b. Calculate the value of the forward contract for the investor at the maturity of…
arrow_forward
A stock currently trades at $100. In one month its price will either be $125, $100, or $75. 1 sell you a call option on this stock, struck at $95, for $11. | hedge my exposure by purchasing A shares, borrowing 1004 - 11 in order to fund the purchase. The simple rate of interest is 12%. (@) What will my profit/loss be in one month? {b) Is it possible for me to completely hedge my exposure? Explain.
arrow_forward
4. A stock is selling today for $100. The stock has an annual volatility of 45 percent and the annual risk-free interest rate is 12 percent. A 1 year European put option with an exercise price of $90 is available to an investor
.a.Use Excel’s data table feature to construct a Two-Way Data Table to demonstrate the impact of the risk free rate of interest and the volatility on the price of this put option:
i. Risk Free Rates of 5%, 7%, 9%, 12%, 15% and 18%.
ii. Volatility of 35%, 45%, 55%, and 65%.
b. How is the put option price impacted by varying the risk free rate of interest?
c.How is the put option price impacted by varying the volatility?
arrow_forward
XYZ Corporation will pay a $2 per share dividend in two months. Its stock price currently is $80 per share. A European call option on
XYZ has an exercise price of $75 and 3-month time to expiration. The risk-free interest rate is 0.95% per month, and the stock's
volatility (standard deviation) - 18 % per month. Find the Black-Scholes value of the option. (Hint: Try defining one "period" as a month,
rather than as a year, and think about the net-of-dividend value of each share.)
Note: Round your answer to 2 decimal places.
Black-Scholes value of the option
arrow_forward
You observe that the settlement price of a one-year futures contract for 1 share of a dividend paying stock is currently at $52. The current stock price is $50 and the risk-free interest rate is 10% p.a. (compounded annually). It is also known that the dividend yield on the stock is 4% p.a. (compounded annually). Set up a strategy to realize an arbitrage profit today and show the initial and terminal cash flows from each position taken in the strategy. Assume that investors can short-sell or buy the stock on margin and that they can borrow and lend at the risk-free rate.
Thank you!
arrow_forward
A stock is selling today for $110. The stock has an annual volatility of 64 percent and the annual
risk-free rate is 7 percent.
a.
Calculate the fair price for a 1 year European call option with an exercise price of $95.
b. Calculate how much the current stock price would need to change for the purchaser of
the call option to break even in one year.
c.
Calculate the fair price for a 1 year European put option with an exercise price of $95.
d. Calculate how much the current stock price would need to change for the purchaser of
the put option to break even in one year.
e. Calculate the level of volatility that would make a $95 call option sell for $30. (Use Goal
Seek or Solver).
f.
Calculate the level of volatility that would make a $95 put option sell for $8. (Use Goal
Seek or Solver).
Please show work using excel
arrow_forward
You own a $1,000-par zero-coupon bond that has 5 years of remaining maturity.You plan on selling the bond in one year and believe that the required yield next year will have the following probability distribution in the table highlighted in yellow color.2a. What is your expected price when you sell the bond?2b. What is the standard deviation?
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Intermediate Financial Management (MindTap Course...
Finance
ISBN:9781337395083
Author:Eugene F. Brigham, Phillip R. Daves
Publisher:Cengage Learning

Related Questions
- Stock Y is currently selling for $35. You believe that, one year from now, Stock Y will sell for either $65 (up-state) or $25 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 2.5%. You have a European call option with a 1-year expiration date and an exercise price of $40. If you where to create a strategy that replicates this option, how many shares would you need to buy (shortsell if negative)? In other words, what is the call option delta?arrow_forwardYou have two options to invest $1000 in: A $1050 face value bond with coupon rate c = i) ii) = 6%. A stock portfolio that you aim to resell at $1100 after receiving a dividend of $50. Then answer the following: a) Which of the two options makes you the highest rate of return? b) Is there any reason why would you want to choose the other?arrow_forwardThe current price of a stock is $20. In 1 year, the price will be either $28 or $15. The annual risk-free rate is 7%. The data has been collected in the Microsoft Excel Online file below. Open the spreadsheet and perform the required analysis to answer the question below. Find the price of a call option on the stock that has a strike price is of $25 and that expires in 1 year. (Hint: Use daily compounding.) Assume 365-day year. Do not round intermediate calculations. Round your answer to the nearest cent.arrow_forward
- You now face the choice of investing it in a U.S. Treasury bond that will return $633,000 at the end of a year or a common stock that has a 50-50 chance of being worthless or worth $1,380,000 at the end of the year. The expected rate of return on the T-bond investment is 5.5%. What is the expected rate of return on the stock investment? Round your answer to the nearest whole number.arrow_forwardAssume that the current stock price is $50 per share, that call options can be purchased with an exercise price of $60 per share, that bank loans can be obtained for a 10 percent nominal rate, and that at expiration of the option in three months, the stock will either be valued at $30 or $70. Show that it is possible to replicate the stock payoff by borrowing and buying a call option.arrow_forwardThe price of Bobco stock is currently $60. In one year, the price will either be s66 or $54. If the one-year risk free rate of interest is 6%, what is the price of a Bobco call option with an exercise price of $61? Recall, you will want to set 66N - 1.06B = 5 as one of the equations you need to solve this problem. You will need to figure out the other equation, then use both equations to solve for N and B. Then, you will price the portfolio of N shares less the amount borrowed. Round your answer to nearest cent. $6 $60 $54arrow_forward
- Suppose the current stock price is $50 and you believe that, one year from now, the stock will sell for either $60 (up-state) or $30 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 4%. You have a European put option with a 1-year expiration date and an exercise price of $40. The call option price with the same exercise price with the same maturity date is $14.10. What would be the put option price? (SHOW YOUR WORK)arrow_forwardA stock is selling today for $110. The stock has an annual volatility of 64 percent and the annual risk-free rate is 7 percent. c. Calculate the fair price for a 1 year European put option with an exercise price of $95. d. Calculate how much the current stock price would need to change for the purchaser of the put option to break even in one year. e. Calculate the level of volatility that would make a $95 call option sell for $30. (Use Goal Seek or Solver). f. Calculate the level of volatility that would make a $95 put option sell for $8. (Use Goal Seek or Solver). Please show work using excelarrow_forwardA stock has a current price of $67. An option on this stock that expires in six months has an exercise price of $65. The stock will pay a dividend of $5 in three months. Assume an annualized volatility of 30% and a continuously compounded risk - free rate of 5% per annum. Use the Black - Sholes - Merton model to price this option. 1) Suppose the option is a European put. Calculate the value of the put. 2) Suppose this option is an American call. Use Black's approximation to calculate the value of this call.arrow_forward
- I need help on this pls and as soon as possible: C. A coupon bond has a face value of $ 1,000, remaining maturity of 10 years, a 5% annuallypaid coupon, and a market interest rate of 4%. (1) What is the current price for the above bond? (2) Even though the bonds of a corporation are less risky than equity, investors still haverisks. Please discuss potential risks that investors face.arrow_forwardStock Z is currently selling for $120. You believe that, one year from now, Stock Z will sell for either $155 (up-state) or $85 (down-state). The yield on a 1-year risk-free zero coupon bond is currently 4%. You have a European put option with a 1-year expiration date and an exercise price of $115. What is this option's delta (Δ) ?arrow_forwardXYZ Corp. will pay a $2 per share dividend in two months. Its stock price currently is $60 per share. A call option on XYZ has an exercise price of $55 and 3-month time to expiration. The risk-free interest rate is .5% per month, and the stock’s volatility (standard deviation) = 7% per month. Find the Black-Scholes value of the option. (Hint: Try defining one “period” as a month, rather than as a year, and think about the net-of-dividend value of each share.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Intermediate Financial Management (MindTap Course...FinanceISBN:9781337395083Author:Eugene F. Brigham, Phillip R. DavesPublisher:Cengage Learning

Intermediate Financial Management (MindTap Course...
Finance
ISBN:9781337395083
Author:Eugene F. Brigham, Phillip R. Daves
Publisher:Cengage Learning
